2020-1ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์•Œ๊ณ ๋ฆฌ์ฆ˜โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-1ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์•Œ๊ณ ๋ฆฌ์ฆ˜โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


3-SAT โ†’ Independent-Set

Claim. 3-SAT $\le_P$ Independent-Set

์šฐ๋ฆฌ๋Š” ์•„๋ž˜์™€ ๊ฐ™์€ 3-SAT ๋ฌธ์ œ๋ฅผ Independent-Set ๋ฌธ์ œ๋กœ ํ™˜์›(Reduction)ํ•  ๊ฒƒ์ด๋‹ค.

\[(\bar{x} \lor y \lor \bar{z})(x \lor \bar{y} \lor z)(x \lor y \lor z)(\bar{x} \lor \bar{y})\]

์ด๋•Œ, Indenpendent-Set ๋ฌธ์ œ $(G, k)$๋Š” $k$๊ฐœ์˜ pairwise non-adjacent vertices๋ฅผ ์ฐพ๋Š” ๋ฌธ์ œ๊ฐ€ ๋œ๋‹ค. ์œ„์˜ 3-SAT ๋ฌธ์ œ๋Š” ์ด 4๊ฐœ์˜ clauses๊ฐ€ ์กด์žฌํ•˜๋Š”๋ฐ, ์ด ๊ฒฝ์šฐ Reduction์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ Independent-Set ๋ฌธ์ œ๋Š” $(G, 4)$์œผ๋กœ $k=4$์ด ๋œ๋‹ค.

Proof

Given an instance $\Phi$ of 3-SAT with $k$ clauses, we construct an instance $(G, k)$ of Indenpendent-Set that has an indenpendent set of size $k$ iff $\Phi$ is satisfiable.

[Problem Transformation]

Construct an instance of Independent-Set from an instance of 3-SAT as following rule:

1. $G$ contains 3 vertices for each clause, one for each literal.

2. Connect 3 literals in a clause in a triangle.

3. Connect literal to each of its negations.


[Solution Transformation]

(1) Given an independent set $S$ of $k$ vertices in $G$, it is possible to efficiently recover a satisfying truth assignment to $\Phi$.

For any variable $x$, the set $S$ cannot contain vertices labeled both $x$ and $\bar{x}$, because any such pair of vertices is connected by an edge (step 3). So assign $x$ a value of $\text{true}$ if $S$ contains a vertex labeled $x$, and a value of $\text{false}$ if $S$ contains a vertex labeled $\bar{x}$. If $S$ contains neither $x$ or $\bar{x}$, then assign any value to $x$. Since $S$ has $k$ vertices, it must have one vertex per clause (step 2). This truth assignment guarantees to satisfy all clauses.


(2) If graph $G$ has no independent set of size $k$, then 3-SAT instance $\Phi$ is unsatisfiable.

Contrapositive(๋Œ€์šฐ)๋ฅผ ํ†ตํ•ด ์ฆ๋ช…ํ•œ๋‹ค. โ€œIf $\Phi$ has a satisfying assignment, then $G$ has an independent set of size $k$.โ€ $\Phi$๊ฐ€ satisfiable์ด๋ฏ€๋กœ, ๊ฐ clause์—์„œ ์ ์–ด๋„ ํ•˜๋‚˜์˜ literal์€ $\text{true}$์ด๋‹ค. ๊ฐ literal์—์„œ $\text{true}$์ธ literal์„ ํ•˜๋‚˜์”ฉ ์„ ํƒํ•˜๋ฉด, ์ด $k$๊ฐœ์˜ literal์„ ์„ ํƒํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๊ฒƒ์ด ๊ณง size $k$์ธ independent set $S$์ด๋‹ค.


Independent-Set โ†’ Vertex Cover

์‚ฌ์‹ค ์ด ๋ถ€๋ถ„์€ Independent Set, Vertex Cover, and Clique ํฌ์ŠคํŠธ์—์„œ ์ด๋ฏธ ๋‹ค๋ฃจ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ƒ๊ธฐ๋„ ํ•  ๊ฒธ ์ผ๋ถ€๋งŒ ๋‹ค์‹œ ํ•œ๋ฒˆ ์‚ดํŽด๋ณด์ž.

\[\text{Vertex Cover} \equiv_P \text{Independent Set}\]

There is very fun fact: โ€œIf $S$ is a vertex cover, then $V \setminus S$ is an independent set.โ€

$V \setminus S$๊ฐ€ independent set์ด ์•„๋‹ˆ๋ผ๊ณ  ํ•˜์ž, ๊ทธ๋Ÿฌ๋ฉด ์–ด๋–ค $x, y \in V \setminus S$์— ๋Œ€ํ•ด edge๊ฐ€ ์กด์žฌํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ $x, y$ ๋ชจ๋‘ $V \setminus S$์— ์†ํ•˜๊ธฐ ๋•Œ๋ฌธ์— $x, y$๋ฅผ ์ž‡๋Š” edge๋Š” Vertex Cover $S$์— ์˜ํ•ด ์ปค๋ฒ„๋˜์ง€ ์•Š๋Š”๋‹ค. ์ด๊ฒƒ์€ $S$๊ฐ€ Vertex Cover๋ผ๋Š” ์‚ฌ์‹ค์— ๋ชจ์ˆœ์ด๋‹ค. ๋”ฐ๋ผ์„œ, $S$๊ฐ€ Vertex Cover๋ผ๋ฉด, $V \setminus S$๋Š” Independent Set์ด๋‹ค.

Independent-Set โ†’ Clique

์ด ๋ถ€๋ถ„๋„ Independent Set, Vertex Cover, and Clique ํฌ์ŠคํŠธ์—์„œ ์ด๋ฏธ ๋‹ค๋ฃจ์—ˆ๋‹ค.

For a graph $G = (V, E)$, define the complement graph $\bar{G} = (V, \bar{E})$. Then, an independent set $S$ of $G$ is a clique of $\bar{G}$.

$G$์— ๋Œ€ํ•œ Indenpendent-Set์„ ์ฐพ๊ณ  ์‹ถ๋‹ค๋ฉด, complement graph $\bar{G}$ ์œ„์—์„œ Clique๋ฅผ ์ฐพ์œผ๋ฉด ๋˜์—ˆ๋‹ค. ๋ฐ˜๋Œ€์˜ ๊ฒฝ์šฐ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋‹ค.


3-SAT โ†’ Clique

Claim. 3-SAT $\le_P$ Clique

์ด๋ฒˆ์—๋Š” ์•„๋ž˜์™€ ๊ฐ™์€ 3-SAT ๋ฌธ์ œ๋ฅผ Clique ๋ฌธ์ œ๋กœ ํ™˜์›ํ•ด๋ณด์ž.

\[(\bar{x} \lor y \lor z)(x \lor \bar{y} \lor z)(\bar{x} \lor y \lor w)\]

Proof

Given an instance $\Phi$ of 3-SAT consisting of $k$ clauses, we construct an instance $(G, k)$ of Clique that has a clique of size $k$ iff $\Phi$ is satisfiable.

[Problem Transformation]

Construct an instance of Clique from an instance of 3-SAT as following rule:

1. $G$ contains 3 vertices for each clause, one for each literal.

2. Connect a literal $u$ to other literal $v$ if they belong to different clauses and $u \ne \bar{v}$.

์ด์ œ ๊ตฌ์„ฑํ•œ $(G, k)$ ์œ„์—์„œ $k$-clique๋ฅผ ์ฐพ์œผ๋ฉด ๋œ๋‹ค. ์œ„ ๋ฌธ์ œ์˜ ๊ฒฝ์šฐ, 3-clique๋ฅผ ์ฐพ์œผ๋ฉด ๋˜๋Š”๋ฐ, $\bar{x}$, $\bar{x}$, $z$๋ฅผ ์„ ํƒํ•ด์„œ ์•„์ฃผ ์‰ฝ๊ฒŒ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค.

์•ž์—์„œ Independent-Set ๋ฌธ์ œ๋ฅผ Clique ๋ฌธ์ œ๋กœ ํ™˜์›ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ํ–ˆ๋‹ค. ๋‘ ๋ฌธ์ œ์˜ ๊ด€๊ณ„๋Š” complement $G \leftrightarrow \bar{G}$์˜ ๊ด€๊ณ„ ์˜€๋‹ค. ์ด๋ฒˆ 3-SAT $\le_P$ Clique ๋ฌธ์ œ๋„ ๋น„์Šทํ•ด๋ณด์ด์ง€ ์•Š๋Š”๊ฐ€? Clique ๊ทธ๋ž˜ํ”„ $(G, k)$์˜ Complement $(\bar{G}, k)$๋ฅผ ๊ตฌํ•œ ํ›„ Independent-Set์„ ๊ตฌํ•ด๋„ ๋™์ผํ•˜๊ฒŒ 3-SAT ๋ฌธ์ œ์˜ ํ•ด๋‹ต์„ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค.


ํ•จ๊ป˜ ๋ณด๊ธฐ

Categories:

Updated: