Limit and Continuity: Problem Solving
볡μμ 곡νκ³ μλ μνκ³Όμ μ‘Έμ μνμ μν΄ νλΆ μν κ³Όλͺ©λ€μ λ€μ 곡λΆνκ³ μμ΅λλ€. 곡λΆνλ©΄μ μ¬λ°μ΄ 보μλ λ¬Έμ λ€κ³Ό νμ΄λ€μ λͺ¨μμ μ 리ν ν¬μ€νΈ μ λλ€. λ―Έμ λΆν ν¬μ€νΈ μ 체 보기
μ λΈ λ Όλ²μ΄ μ립λ κ³Όμ
κ·Ήνμ μλͺ»λ λͺ μ λ‘ μ μ νμ λ λ°μνλ λ¬Έμ λ₯Ό μ΄ν΄λ³Έλ€. κ³Όμ μ λ°λΌκ°λ€λ³΄λ©΄ μ λΈ λ Όλ²μμ $\epsilon$κ³Ό $\delta$κ° μ νμνμ§ μμ°μ€λ½κ² μκ² λλ€.
Wrong statement about limits
Show by example that the following statement is wrong.
The number $L$ is the limit of $f(x)$ as $x$ approaches $c$ if $f(x)$ gets closer to $L$ as $x$ approaches $c$.
Explain why the function in your example does not have the given value of $L$ as a limit as $x \rightarrow c$.
λ°λ‘λ μμΈλ‘ μ¬μ΄λ°, $f(x) = x^2$μΌ λ, $f(x)$λ $x \rightarrow 0$μΌλ‘ κ°λ©΄ $-1$μ κ°κΉμμ§λ€. κ·Έλ°λ° κ·Ήνμ μμ κ°μ΄ μ μνλ©΄ κ·Ήνκ° $L$μ $-1$λ‘ μ‘μλ κ·Έκ²μ΄ μ±λ¦½νλ€.
μ΄κ²μ ννμ λͺ¨νΈμ± λλ¬ΈμΈλ°, β$f(x)$ gets closer to $L$βλΌλ ννμ΄ $d(x) = |f(x) - L|$μ κ°μ΄ $x \rightarrow c$μ λ°λΌ μ€μ΄λ€κΈ°λ§ νλ©΄ λκΈ° λλ¬Έμ΄λ€. κ°κ²© ν¨μ $d(x)$μ κ°μ΄ κΌ 0μ κ°κΉμμ§ νμκ° μλ€. μ΄λ κ² μ μν κ²½μ° ν¨μμ κ·Ήνκ°μ΄ μ μΌνμ§ μκ³ μ¬λ¬κ° μ‘΄μ¬νλ κΌ΄μ΄ λλ€.
κ·Έλμ μ ννκ² νννλ €λ©΄, κ°κ²© $d(x) \rightarrow 0$λ‘ κ·Ήνκ³Ό ν¨μ«κ°μ΄ κ±°μ μΌμΉν΄μ 0μ κ°κΉμμ ΈμΌ ν¨μ μΈκΈ ν΄μΌ νλ€.
cc. μ¬μ€ λκ° νλ Έλμ§ λμ ν μκ°μ λͺ»ν΄μ κ²μν΄μ μ°Ύμλ€ γ γ μΆμ²
Another wrong statement about limits
Show by example that the following statement is wrong.
The number $L$ is the limit of $f(x)$ as $x$ approaches $c$ if, given any $\epsilon > 0$, there eixsts a value of $x$ for which $| f(x) - L | < \epsilon$.
Explain why the function in your example does not have the given value of $L$ as a limit as $x \rightarrow c$.
μ΄λ²μ κ°κ²© κ·Ήνκ°κ³Ό ν¨μ κ°μ΄ κ±°μ μΌμΉν΄μΌ νλ€λ μ‘°κ±΄μ΄ λΆμλ€. κ·Έλ¬λ μνκΉκ²λ $| f(x) - L | < \epsilon$μ λ§μ‘±ν λμ $x$ κ°μ λν μ‘°κ±΄μ΄ λΉ μ Έμλ€β¦
ν¨μ $f(x)$λ₯Ό $\sin x$λ‘ μ‘κ³ , $c = 0$, κ·Ήνκ° $L$μ $1/2$λ‘ μ‘μ보μ. κ·Έλ¬λ©΄ μμμ $\epsilon > 0$μ λν΄μ $| \sin x - 1/2 | < \epsilon$λ₯Ό λ§μ‘±νλ $x$κ° νμ μ‘΄μ¬νλλ°, 그건 λ°λ‘ $x = \pi/6$ μΌ λλ€!
μ΄?! κ·Έλ°λ° $x = \pi/6$μ $c = 0$κ³Ό λ무 λ©μ§ μμκ°?? μνκΉκ²λ ν¨μ«κ°κ³Ό κ·Ήνκ°μ΄ κ°κΉμΈ λμ $x$ κ°μ λν 쑰건μ μ νμ§ μμλ€β¦ β$x$ approaches $c$βλΌκ³ νν νμ§λ§, μ΄λ° ννμ μλ°νμ§ μλ€. κ·Έλμ $x$ κ°μ΄ $\pi/6$μ΄λλΌλ μμ λͺ μ κ° λ§μ‘±νλ κ²μ΄λ€β¦!
κ·Έλμ μ λΈ-λ Όλ²μ $| x - c | < \delta$ λ²μμ λͺ¨λ $x$κ° $\epsilon$μ λν λΆλ±μμ λ§μ‘±νλ $\delta > 0$μ κ°λ μ΄ μΆκ°λ κ²μ΄λ€.
cc. μ λ¬Έμ λ μ΄λκ° μλͺ»λ κ±΄μ§ λμ ν λͺ» μ°Ύκ² μ΄μ μ루μ μ± μ λ³΄κ³ μΌ μ΄ν΄νλ€ γ γ
κ·Έλμ μ°λ¦° μ λΈ-λ Όλ²μ κ·Ήνμ μ μλ‘ μ¬μ©ν©λλ€
μμ λ λ¬Έμ λ μ λΈ-λ Όλ²μμ $\epsilon$μ $\delta$κ° μμΌλ©΄ λ²μ΄μ§λ λμ°ν μΌλ€μ λ§ν΄μ€λ€. μμ μ λΈμ 짱μ΄μΌβ¦ κ·Έλμ μ λΈμ κ·Ήνμ μλ°ν μ μλΌκ³ νλ보λ€.
Let $f(x)$ be defined on an poen interval about $c$, except possible at $c$ itself. (ν¨μκ°μ΄ $x=c$μμ μ μλμ§ μμλ μκ΄ μκΈ° λλ¬Έ.)
We say that the limit of $f(x)$ as $x$ approaches $c$ is the number $L$, and write
\[\lim_{x \rightarrow c} f(x) = L\]if for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ s.t. for all $x$,
\[0 < | x - c | < \delta \Longrightarrow | f(x) - L | < \epsilon\]μ λΈ-λ Όλ²μμ μ λλλ μ λͺ ν μ±μ§μ΄ λ°λ‘ βUniqueness of Limitβλ€. μ λΈ-λ Όλ²μ΄ κ·Ήνμ μλ°νκ² μ μν΄μ€ λλΆμ βκ·Ήνμ΄ μ¬λ¬κ° μμΌλ©΄ μ΄λ»νμ§?βλΌλ λΆμκ° μμ΄ κ·Ήνμ νλμΌ!λΌκ³ λ§ν μ μλ€.
A Fixed point Theorem
Suppose that a function $f$ is continuous on the closed interval $[0, 1]$ and that $0 \leq f(x) \leq 1 $ for every $x$ in $[0, 1]$. Show that there must exist a number $c$ in $[0, 1]$ s.t. $f(c) = c$ ($c$ is called a fixed point of $f$).
νμ΄. $g(x) = f(x) - x$λΌκ³ νμ. μλμ λν΄μ $0 \leq g(0) \leq 1$, $-1 \leq g(1) \leq 0$μ λ§μ‘±νλ€.
λ§μ½ $g(0) = 0$μ΄κ±°λ $g(1) = 0$μ΄λ©΄ $f(0) = 0$, $f(1) = 1$μ΄κΈ° λλ¬Έμ μμ λͺ μ λ₯Ό λ§μ‘±νλ€.
λ§μ½, $g(0) \neq 0$μ΄κ³ $g(1) \neq 0$λΌλ©΄ $0 <g(0)$μ΄κ³ , $g(1) < 0$μ΄ λλλ°, μ€κ°κ° μ 리(Intermediate Value Theorem)μ μ¬μ©νλ©΄ $(0, 1)$ λ²μ μ¬μ΄μ μ΄λ€ μμ $c$κ° μμ΄ $g(c) = 0$μ λ§μ‘±νλ $c$κ° μ‘΄μ¬ν¨μ 보μ₯ν μ μλ€. κ·Έλ°λ° $g(c) = 0$μ 곧 $f(c) = c$κ° λ¨μ μλ―Ένλ―λ‘, μμ λͺ μ κ° μ±λ¦½νλ€. $\blacksquare$
Assigning a value to zero power of zero
\[0^0\]μ κ°μΌλ‘ μλ λ μ€ μ΄λ€ κ°μ΄ λ§μμ§μ λν λ¬Έμ λ€.
- $a^0 = 1$μ΄λ―λ‘ $0^0$λ $1$μ΄λ€.
- $0^n = 0$μ΄λ―λ‘ $0^0$λ $0$μ΄λ€.
μΌλ¨ ν΅μμ μΌλ‘λ $0^0 = 1$λ‘ μ μνλ€. κ·Έ μ΄μ λ $f(x) = x^x$ ν¨μλ₯Ό μ μν΄ μλ μΌμ΄μ€λ₯Ό κ³μ°ν΄λ³΄λ©΄
- $f(0.1) = 0.794$
- $f(0.01) = 0.955$
- $f(0.001) = 0.993$
μΌλ‘ μ μ $1$λ‘ μλ ΄νκΈ° λλ¬Έμ΄λ€. μ΄μ©λ©΄ $0^0$μ $f(x) = x^x$μμ μ μλμ§ μλ κ°μΌ μλ μκ³ , μ°λ¦¬λ $0^0 = 1$λΌκ³ μκΈ°νλ κ²λ μ νν ν¨μ«κ°μ΄ μλλΌ κ·Έ κ·Ήνκ°μ΄ κ·Έλ λ€λ κ±Έ μκΈ°νλ κ±Έμ§λ λͺ¨λ₯΄κ² λ€.