μž…λΈ 논법이 λ§Œλ“€μ–΄μ§€λŠ” 과정에 λŒ€ν•΄μ„œ, 그리고 μž¬λ°Œμ—ˆλ˜ λ¬Έμ œλ“€

7 minute read

λ³΅μˆ˜μ „κ³΅ν•˜κ³  μžˆλŠ” μˆ˜ν•™κ³Όμ˜ μ‘Έμ—…μ‹œν—˜μ„ μœ„ν•΄ ν•™λΆ€ μˆ˜ν•™ κ³Όλͺ©λ“€μ„ λ‹€μ‹œ κ³΅λΆ€ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€. κ³΅λΆ€ν•˜λ©΄μ„œ μž¬λ°Œμ–΄ λ³΄μ˜€λ˜ λ¬Έμ œλ“€κ³Ό 풀이듀을 λͺ¨μ•„μ„œ μ •λ¦¬ν•œ 포슀트 μž…λ‹ˆλ‹€. 미적뢄학 포슀트 전체 보기

μž…λΈ 논법이 수립된 κ³Όμ •

κ·Ήν•œμ„ 잘λͺ»λœ λͺ…μ œλ‘œ μ •μ˜ ν–ˆμ„ λ•Œ λ°œμƒν•˜λŠ” 문제λ₯Ό μ‚΄νŽ΄λ³Έλ‹€. 과정을 따라가닀보면 μž…λΈ λ…Όλ²•μ—μ„œ $\epsilon$κ³Ό $\delta$κ°€ μ™œ ν•„μš”ν•œμ§€ μžμ—°μŠ€λŸ½κ²Œ μ•Œκ²Œ λœλ‹€.

Wrong statement about limits

Show by example that the following statement is wrong.

The number $L$ is the limit of $f(x)$ as $x$ approaches $c$ if $f(x)$ gets closer to $L$ as $x$ approaches $c$.

Explain why the function in your example does not have the given value of $L$ as a limit as $x \rightarrow c$.

λ°˜λ‘€λŠ” μ˜μ™Έλ‘œ μ‰¬μš΄λ°, $f(x) = x^2$일 λ•Œ, $f(x)$λŠ” $x \rightarrow 0$으둜 κ°€λ©΄ $-1$에 κ°€κΉŒμ›Œμ§„λ‹€. 그런데 κ·Ήν•œμ„ μœ„μ™€ 같이 μ •μ˜ν•˜λ©΄ κ·Ήν•œκ°’ $L$을 $-1$둜 μž‘μ•„λ„ 그것이 μ„±λ¦½ν•œλ‹€.

이것은 ν‘œν˜„μ˜ λͺ¨ν˜Έμ„± λ•Œλ¬ΈμΈλ°, β€œ$f(x)$ gets closer to $L$β€λΌλŠ” ν‘œν˜„μ΄ $d(x) = |f(x) - L|$의 값이 $x \rightarrow c$에 따라 μ€„μ–΄λ“€κΈ°λ§Œ ν•˜λ©΄ 되기 λ•Œλ¬Έμ΄λ‹€. 간격 ν•¨μˆ˜ $d(x)$의 값이 κΌ­ 0에 κ°€κΉŒμ›Œμ§ˆ ν•„μš”κ°€ μ—†λ‹€. μ΄λ ‡κ²Œ μ •μ˜ν•  경우 ν•¨μˆ˜μ˜ κ·Ήν•œκ°’μ΄ μœ μΌν•˜μ§€ μ•Šκ³  μ—¬λŸ¬κ°œ μ‘΄μž¬ν•˜λŠ” 꼴이 λœλ‹€.

κ·Έλž˜μ„œ μ •ν™•ν•˜κ²Œ ν‘œν˜„ν•˜λ €λ©΄, 간격 $d(x) \rightarrow 0$둜 κ·Ήν•œκ³Ό ν•¨μˆ«κ°’μ΄ 거의 μΌμΉ˜ν•΄μ„œ 0에 κ°€κΉŒμ›Œμ Έμ•Ό 함을 μ–ΈκΈ‰ ν•΄μ•Ό ν•œλ‹€.

cc. 사싀 뭐가 ν‹€λ ΈλŠ”μ§€ λ„μ €νžˆ 생각을 λͺ»ν•΄μ„œ κ²€μƒ‰ν•΄μ„œ μ°Ύμ•˜λ‹€ γ… γ…  좜처

Another wrong statement about limits

Show by example that the following statement is wrong.

The number $L$ is the limit of $f(x)$ as $x$ approaches $c$ if, given any $\epsilon > 0$, there eixsts a value of $x$ for which $| f(x) - L | < \epsilon$.

Explain why the function in your example does not have the given value of $L$ as a limit as $x \rightarrow c$.

μ΄λ²ˆμ—” 간격 κ·Ήν•œκ°’κ³Ό ν•¨μˆ˜ 값이 거의 μΌμΉ˜ν•΄μ•Ό ν•œλ‹€λŠ” 쑰건이 λΆ™μ—ˆλ‹€. κ·ΈλŸ¬λ‚˜ μ•ˆνƒ€κΉκ²Œλ„ $| f(x) - L | < \epsilon$을 λ§Œμ‘±ν•  λ•Œμ˜ $x$ 값에 λŒ€ν•œ 쑰건이 λΉ μ Έμžˆλ‹€β€¦

ν•¨μˆ˜ $f(x)$λ₯Ό $\sin x$둜 작고, $c = 0$, κ·Ήν•œκ°’ $L$은 $1/2$둜 μž‘μ•„λ³΄μž. 그러면 μž„μ˜μ˜ $\epsilon > 0$에 λŒ€ν•΄μ„œ $| \sin x - 1/2 | < \epsilon$λ₯Ό λ§Œμ‘±ν•˜λŠ” $x$κ°€ 항상 μ‘΄μž¬ν•˜λŠ”λ°, 그건 λ°”λ‘œ $x = \pi/6$ 일 λ•Œλ‹€!

μ–΄?! 그런데 $x = \pi/6$은 $c = 0$κ³Ό λ„ˆλ¬΄ 멀지 μ•Šμ€κ°€?? μ•ˆνƒ€κΉκ²Œλ„ ν•¨μˆ«κ°’κ³Ό κ·Ήν•œκ°’μ΄ κ°€κΉŒμšΈ λ•Œμ˜ $x$ 값에 λŒ€ν•œ 쑰건을 μ •ν•˜μ§€ μ•Šμ•˜λ‹€β€¦ β€œ$x$ approaches $c$”라고 ν‘œν˜„ ν–ˆμ§€λ§Œ, 이런 ν‘œν˜„μ€ μ—„λ°€ν•˜μ§€ μ•Šλ‹€. κ·Έλž˜μ„œ $x$ 값이 $\pi/6$이더라도 μœ„μ˜ λͺ…μ œκ°€ λ§Œμ‘±ν•˜λŠ” 것이닀…!

κ·Έλž˜μ„œ μž…λΈ-논법은 $| x - c | < \delta$ λ²”μœ„μ˜ λͺ¨λ“  $x$κ°€ $\epsilon$에 λŒ€ν•œ 뢀등식을 λ§Œμ‘±ν•˜λŠ” $\delta > 0$의 κ°œλ…μ΄ μΆ”κ°€λœ 것이닀.

cc. μš” λ¬Έμ œλ„ μ–΄λ””κ°€ 잘λͺ»λœ 건지 λ„μ €νžˆ λͺ» μ°Ύκ² μ–΄μ„œ μ†”λ£¨μ…˜ 책을 보고야 μ΄ν•΄ν–ˆλ‹€ γ… γ… 

κ·Έλž˜μ„œ 우린 μž…λΈ-논법을 κ·Ήν•œμ˜ μ •μ˜λ‘œ μ‚¬μš©ν•©λ‹ˆλ‹€

μœ„μ˜ 두 λ¬Έμ œλŠ” μž…λΈ-λ…Όλ²•μ—μ„œ $\epsilon$와 $\delta$κ°€ μ—†μœΌλ©΄ λ²Œμ–΄μ§€λŠ” λ”μ°ν•œ 일듀을 말해쀀닀. μ—­μ‹œ μž…λΈμ€ 짱이야… κ·Έλž˜μ„œ μž…λΈμ„ κ·Ήν•œμ˜ μ—„λ°€ν•œ μ •μ˜λΌκ³  ν•˜λ‚˜λ³΄λ‹€.

Let $f(x)$ be defined on an poen interval about $c$, except possible at $c$ itself. (ν•¨μˆ˜κ°’μ΄ $x=c$μ—μ„œ μ •μ˜λ˜μ§€ μ•Šμ•„λ„ 상관 μ—†κΈ° λ•Œλ¬Έ.)

We say that the limit of $f(x)$ as $x$ approaches $c$ is the number $L$, and write

\[\lim_{x \rightarrow c} f(x) = L\]

if for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ s.t. for all $x$,

\[0 < | x - c | < \delta \Longrightarrow | f(x) - L | < \epsilon\]

μž…λΈ-λ…Όλ²•μ—μ„œ μœ λ„λ˜λŠ” 유λͺ…ν•œ μ„±μ§ˆμ΄ λ°”λ‘œ β€œUniqueness of Limit”닀. μž…λΈ-논법이 κ·Ήν•œμ„ μ—„λ°€ν•˜κ²Œ μ •μ˜ν•΄μ€€ 덕뢄에 β€œκ·Ήν•œμ΄ μ—¬λŸ¬κ°œ 있으면 μ–΄λ–»ν•˜μ§€?β€λΌλŠ” λΆˆμ•ˆκ° 없이 κ·Ήν•œμ€ ν•˜λ‚˜μ•Ό!라고 말할 수 μžˆλ‹€.


A Fixed point Theorem

Suppose that a function $f$ is continuous on the closed interval $[0, 1]$ and that $0 \leq f(x) \leq 1 $ for every $x$ in $[0, 1]$. Show that there must exist a number $c$ in $[0, 1]$ s.t. $f(c) = c$ ($c$ is called a fixed point of $f$).

풀이. $g(x) = f(x) - x$라고 ν•˜μž. 양끝에 λŒ€ν•΄μ„œ $0 \leq g(0) \leq 1$, $-1 \leq g(1) \leq 0$을 λ§Œμ‘±ν•œλ‹€.

λ§Œμ•½ $g(0) = 0$μ΄κ±°λ‚˜ $g(1) = 0$이면 $f(0) = 0$, $f(1) = 1$이기 λ•Œλ¬Έμ— μœ„μ˜ λͺ…μ œλ₯Ό λ§Œμ‘±ν•œλ‹€.

λ§Œμ•½, $g(0) \neq 0$이고 $g(1) \neq 0$라면 $0 <g(0)$이고, $g(1) < 0$이 λ˜λŠ”λ°, 쀑간값 정리(Intermediate Value Theorem)을 μ‚¬μš©ν•˜λ©΄ $(0, 1)$ λ²”μœ„ 사이에 μ–΄λ–€ μƒμˆ˜ $c$κ°€ μžˆμ–΄ $g(c) = 0$을 λ§Œμ‘±ν•˜λŠ” $c$κ°€ μ‘΄μž¬ν•¨μ„ 보μž₯ν•  수 μžˆλ‹€. 그런데 $g(c) = 0$은 곧 $f(c) = c$κ°€ 됨을 μ˜λ―Έν•˜λ―€λ‘œ, μœ„μ˜ λͺ…μ œκ°€ μ„±λ¦½ν•œλ‹€. $\blacksquare$


Assigning a value to zero power of zero

\[0^0\]

의 κ°’μœΌλ‘œ μ•„λž˜ λ‘˜ 쀑 μ–΄λ–€ 값이 λ§žμ„μ§€μ— λŒ€ν•œ λ¬Έμ œλ‹€.

  • $a^0 = 1$μ΄λ―€λ‘œ $0^0$도 $1$이닀.
  • $0^n = 0$μ΄λ―€λ‘œ $0^0$도 $0$이닀.

일단 ν†΅μƒμ μœΌλ‘œλŠ” $0^0 = 1$둜 μ •μ˜ν•œλ‹€. κ·Έ μ΄μœ λŠ” $f(x) = x^x$ ν•¨μˆ˜λ₯Ό μ •μ˜ν•΄ μ•„λž˜ μΌ€μ΄μŠ€λ₯Ό 계산해보면

  • $f(0.1) = 0.794$
  • $f(0.01) = 0.955$
  • $f(0.001) = 0.993$

으둜 점점 $1$둜 μˆ˜λ ΄ν•˜κΈ° λ•Œλ¬Έμ΄λ‹€. μ–΄μ©Œλ©΄ $0^0$은 $f(x) = x^x$μ—μ„œ μ •μ˜λ˜μ§€ μ•ŠλŠ” 값일 μˆ˜λ„ 있고, μš°λ¦¬λŠ” $0^0 = 1$라고 μ–˜κΈ°ν•˜λŠ” 것도 μ •ν™•ν•œ ν•¨μˆ«κ°’μ΄ μ•„λ‹ˆλΌ κ·Έ κ·Ήν•œκ°’μ΄ κ·Έλ ‡λ‹€λŠ” κ±Έ μ–˜κΈ°ν•˜λŠ” 걸지도 λͺ¨λ₯΄κ² λ‹€.

Categories:

Updated: