Cauchy์˜ Mean Value Theorem, ๋กœํ”ผํƒˆ ์ •๋ฆฌ์— ๋Œ€ํ•œ ์ฆ๋ช…, ํ•จ์ˆ˜์˜ ์—ฐ์†์„ฑ์„ ์œ„ํ•œ ํ™•์žฅ.

8 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ณต๋ถ€ํ•˜๋ฉด์„œ ์žฌ๋ฐŒ์–ด ๋ณด์˜€๋˜ ๋ฌธ์ œ๋“ค๊ณผ ํ’€์ด๋“ค์„ ๋ชจ์•„์„œ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ ์ž…๋‹ˆ๋‹ค. ๋ฏธ์ ๋ถ„ํ•™ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

Geometric Mean

The geometric mean of two positive numbers $a$ and $b$ is the number $\sqrt{ab}$. Show that the value of $c$ in the conclusion of the Mean Value Theorem fro $f(x) = 1/x$ on an interval of positive numbers $[a, b]$ is $c = \sqrt{ab}$.

MVT๋ฅผ ์ถฉ์‹คํžˆ ์ ์šฉํ•˜๋ฉด ๋˜๋Š” ๋ฌธ์ œ.

By MVT, there exist some $c$ on $[a, b]$ s.t. $fโ€™(c) = \dfrac{f(b) - f(a)}{b-a}$.

\[f'(c) = \frac{1/b - 1/a}{b - a} = -ab\]

์ด๋•Œ, $fโ€™(x) = - 1 / x^2$์ด๋ฏ€๋กœ $c = \sqrt{ab}$๊ฐ€ ๋œ๋‹ค. $\blacksquare$

๊ธฐํ•˜ ํ‰๊ท ์€ ์™œ ๊ธฐํ•˜๋ผ๊ณ  ๋ถ€๋ฅด๋Š”๊ฐ€?

์ง€๊ธˆ๊นŒ์ง€ ์‚ด๋ฉด์„œ โ€œ๊ธฐํ•˜ ํ‰๊ท โ€๋ฅผ ๊ฝค ๋ช‡๋ฒˆ ๋งˆ์ฃผ์ณค๋Š”๋ฐ ์ด๋ฒˆ์— ๋ฌธ์ œ๋ฅผ ํ’€๋ฉด์„œ ๋ฌธ๋“ ์™œ ์ด๊ฑธ โ€œ๊ธฐํ•˜โ€ ํ‰๊ท ์ด๋ผ๊ณ  ๋ถ€๋ฅด๋Š”์ง€ ๊ถ๊ธˆํ•ด์กŒ๋‹ค.

Quora - Why is โ€œgeometric meanโ€ called geometric?์—์„œ ๋งŒ์กฑํ• ๋งŒํ•œ ๋‹ต๋ณ€์„ ์ฐพ์•˜๋‹ค ใ…Žใ…Ž ๊ทธ๋ฆฌ๊ณ  ์ •๋ง ๊ธฐํ•˜ํ•™์—์„œ ์œ ๋ž˜ํ•œ ๊ฒƒ์ด ๋งž๋‹ค!!

์ง์‚ฌ๊ฐํ˜•์˜ ๊ฐ ๋ณ€์ด $a$, $b$ ์ผ๋•Œ, ๊ทธ ์ง์‚ฌ๊ฐํ˜•์˜ ๋„“์ด๋Š” $ab$์ด๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ๊ทธ ์ง์‚ฌ๊ฐํ˜•์ด๋ž‘ ์ •ํ™•ํžˆ ๋˜‘๊ฐ™์€ ๋„“์ด๋ฅผ ๊ฐ–๋Š” ์ •์‚ฌ๊ฐํ˜•์˜ ํ•œ ๋ณ€์˜ ๊ธธ์ด $x$๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด $x^2 = ab$๋กœ ๋’€๊ณ , ์ด๋•Œ์˜ $x$ ๊ฐ’์ธ $x = \sqrt{ab}$๋ฅผ ๊ธฐํ•˜ ํ‰๊ท ์œผ๋กœ ๋‘”๋‹ค๊ณ  ํ•œ๋‹ค.

์š”๊ฑธ ์ •์œก๋ฉด์ฒด, ๊ทธ ์ด์ƒ์˜ ์ฐจ์›์œผ๋กœ๋„ ๊ธฐํ•˜ ํ‰๊ท ์„ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋Ÿผ ์กฐํ™” ํ‰๊ท ์€ ์™œ ์กฐํ™” ํ‰๊ท ์ธ๊ฐ€?

๊ฐ‘์ž๊ธฐ โ€œ์กฐํ™” ํ‰๊ท โ€์€ ์™œ ๊ทธ๋Ÿด๊นŒโ€ฆ๋ผ๋Š” ์ƒ๊ฐ๋„ ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค ใ…‹ใ…‹ใ…‹

Harmonic Mean.

\[\left(\frac{1/a + 1/b}{2}\right)^{-1} = \frac{2ab}{a+b}\]

์š”๊ฑด $\{ 1, 1/3, 1/5, 1/7, โ€ฆ \}$์™€ ๊ฐ™์ด ์—ญ์ˆ˜๊ฐ€ ๋“ฑ์ฐจ์ˆ˜์—ด์„ ์ด๋ฃจ๋Š” โ€œ์กฐํ™” ์ˆ˜์—ดโ€์—์„œ ์ˆ˜์—ด์˜ ์—ฐ์†ํ•œ ์„ธ ๊ฐ’ $a$, $b$, $c$์—์„œ $b$์˜ ๊ฐ’์„ ์กฐํ™” ์ค‘ํ•ญ ๋˜๋Š” ์กฐํ™” ํ‰๊ท ์ด๋ผ๊ณ  ํ•œ๋‹ค.

์ด๋•Œ $b$์™€ $a$, $c$์˜ ๊ฐ’์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์กฐํ™” ํ‰๊ท ๊ณผ ๊ฐ™์€ ํ˜•ํƒœ๊ฐ€ ์œ ๋„๋œ๋‹ค.

Cauchyโ€™s Mean Value Theorem

Suppose functions $f$ and $g$ are continuous on $[a, b]$ and differentiable throughout $(a, b)$ and also suppose $gโ€™(x) \ne 0$ throughout $(a, b)$. Then there exists a number $c$ in $(a, b)$ at which

\[\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}\]

์ผ๋‹จ ์ฝ”์‹œ์˜ ์ •๋ฆฌ๊ฐ€ ์–ด๋–ค ์˜๋ฏธ๋ฅผ ๊ฐ€์ง€๋Š”์ง€๋ถ€ํ„ฐ ์ดํ•ดํ•ด๋ณด์ž. ํ•จ์ˆ˜ $f$์™€ $g$๊ฐ€ ๊ฐ๊ฐ parametric function์˜ $y$, $x$๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ํ•จ์ˆ˜๋ผ๊ณ  ํ•ด๋ณด์ž. (์ฐธ๊ณ ๋กœ Parametric Function์€ ๋ฏธ์ 2 ๋‚ด์šฉ์ด๋‹ค.)

\[\begin{aligned} x &= g(t) \\ y &= f(t) \end{aligned}\]

์ด๋•Œ, $t=a$์™€ $t=b$์— ๋Œ€ํ•œ ํ‰๊ท  ๋ณ€ํ™”์œจ์„ ๊ตฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์„ ๊ฒƒ์ด๋‹ค.

\[\text{slope} = \frac{f(b) - f(a)}{g(b) - g(a)}\]

๊ทธ๋Ÿฐ๋ฐ ์ฝ”์‹œ์˜ ์ •๋ฆฌ๋Š” ์ด slope์˜ ๊ธฐ์šธ๊ธฐ์™€ ๋™์ผํ•œ ๊ธฐ์šธ๊ธฐ๋ฅผ ๊ฐ€์ง„ ์ ‘์„ ์ด $t: (a, b)$ ๋ฒ”์œ„ ์•ˆ์˜ ์–ด๋–ค $t=c$์— ์กด์žฌํ•จ์„ ๋งํ•œ๋‹ค.

์ฆ‰,

\[\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}\]

์ธ ์‹œ์  $t=c$๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

์š”๊ฑธ ์‹œ๊ฐ์ ์œผ๋กœ ํ™•์ธํ•˜๋ฉด ์ด๋Ÿฐ ๋Š๋‚Œ์ด๋‹ค.

์ฆ๋ช…์€ MVT๋ฅผ ํ™œ์šฉํ•˜๋ฉด ๋˜๋Š”๋ฐ, ๊ฐ„๋‹จํ•œ ๊ฒƒ ๊ฐ™์•„์„œ ํŒจ์Šคโ€ฆ!

Proof of lโ€™hรดpitalโ€™s rule

์ผ๋‹จ ์ฆ๋ช…์„ ํ•˜๊ธฐ ์ „์— ์ƒํ™ฉ๋ถ€ํ„ฐ ์„ธํŒ…ํ•˜์ž.

Let assume, $f(a) = g(a) = 0$, and $gโ€™(a) \ne 0$. Then,

\[\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}\]

์ผ๋‹จ $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$๋Š” $0/0$ ๊ผด์˜ ๋ถ€์ •ํ˜•์ธ ์ƒํ™ฉ์ด๋‹ค.

ํ•จ์ˆซ๊ฐ’์˜ ๊ทนํ•œ์„ 0์œผ๋กœ ๋ณด๋‚ด๋Š” $a$๋ผ๋Š” ๊ฐ’์˜ ์˜ค๋ฅธ์ชฝ์—์„œ $a$๋กœ ์ ‘๊ทผํ•˜๋Š” $x \rightarrow a^{+}$ ์ƒํ™ฉ์„ ์‚ดํŽด๋ณด์ž. ๋ฐ˜๋Œ€์ธ $x \rightarrow x^{-}$ ์ƒํ™ฉ์€ ๋Œ€์นญ์ด๋ผ์„œ ์ƒ๋žตํ•œ๋‹ค.

๊ทธ๋ ค๋ฉด ์ฝ”์‹œ์˜ ์ •๋ฆฌ์— ๋”ฐ๋ผ $(a, x)$ ์‚ฌ์ด์— ์•„๋ž˜ ์‹์„ ๋งŒ์กฑํ•˜๋Š” $c$๊ฐ€ ์กด์žฌํ•จ์ด ๋ณด์žฅ๋œ๋‹จ.

\[\frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)}\]

์ด๋•Œ, $f(a) = g(a) = 0$์ด๋ฏ€๋กœ

\[\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}\]

์ด์ œ ์–‘์ชฝ์— ๊ทนํ•œ์„ ์ทจํ•˜๋ฉด

\[\lim_{x \rightarrow a^{+}} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a^{+}} \frac{f'(c)}{g'(c)}\]

์—์„œ $x \rightarrow a^{+}$๊ฐ€ ๋˜๋ฉด, $(a, x)$ ์‚ฌ์ด์— ์žˆ๋Š” $c$๋Š” $c \rightarrow a$๊ฐ€ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ

\[\lim_{x \rightarrow a^{+}} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a^{+}} \frac{f'(c)}{g'(c)} = \lim_{x \rightarrow a^{+}} \frac{f'(a)}{g'(a)}\]

$\blacksquare$

Variation of Sine Function

$(\sin x)^x$

์—ฐ์Šต ๋ฌธ์ œ์— ๋‚˜์™”๋˜ ํ•จ์ˆ˜๋‹ค. ์ผ๋‹จ ๋ฌธ์ œ์—์„œ๋Š” ๊ทธ๋ž˜ํ”„์˜ ๊ฐœํ˜•์„ ๊ทธ๋ ค๋ณด๊ณ , ํ•จ์ˆ˜๊ฐ€ $x=0$์—์„œ ์—ฐ์†์ด๊ธฐ ์œ„ํ•ด ๊ฐ€์ ธ์•ผ ํ•  ํ•จ์ˆซ๊ฐ’์— ๋Œ€ํ•ด์„œ ๋ฌผ์–ด๋ดค๋‹ค.

$x=0$์—์„œ๋Š” $0^0$ ๊ผด์ด ๋˜๋Š”๋ฐ, Ch 1: Limit and Continuity์—์„œ๋„ ๋ดค๋“ฏ์ด $0^0$์˜ ๊ทนํ•œ์˜ ๊ฐ’์€ $1$๋กœ ํ• ๋‹น ํ–ˆ์—ˆ๋‹ค. ์‹ค์ œ๋กœ ํ•จ์ˆ˜ ๊ทธ๋ž˜ํ”„๋„ $x = 0$์—์„œ $1$์˜ ๊ฐ’์„ ๊ฐ€์ง„๋‹ค!

๋ฌผ๋ก  $0^0$์˜ ๊ทนํ•œ์ด $1$์ด์—ˆ์œผ๋‹ˆ $(\sin x)^x$์˜ ๊ทนํ•œ๋„ $1$์ด ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฑด ์—„๋ฐ€ํ•œ ์ฆ๋ช…์ด ์•„๋‹ˆ๋‹ค. ์—„๋ฐ€ํžˆ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด์„œ power form์˜ ๋ถ€์ •ํ˜•์— ๋Œ€ํ•œ ๊ทนํ•œ์„ ํ™•์ธํ•˜๋ฉด ๋œ๋‹ค. (๊ทธ๋ฆฌ๊ณ  ์ด๋•Œ ๋กœํ”ผํƒˆ์„ ์“ฐ๊ฒŒ ๋œ๋‹ค.)

Let $f(x) = (\sin x)^x$, we will find the limit of $\ln f(x)$.

\[\lim_{x \rightarrow 0} \ln f(x) = \lim_{x \rightarrow 0} x \cdot \ln \sin x = \lim_{x \rightarrow 0} \frac{\ln \sin x}{1/x}\]

์ด์ œ $0/0$ ๊ผด์˜ ๊ทนํ•œ์ด๋‹ˆ ๋กœํ”ผํƒˆ ์ •๋ฆฌ๋ฅผ ์ ์šฉํ•˜๋ฉด ๋œ๋‹ค ใ…Žใ…Ž

\[\lim_{x \rightarrow 0} \frac{\ln \sin x}{1/x} \Rightarrow \lim_{x \rightarrow 0} \frac{\cos x/\sin x}{- 1/x^2} = \lim_{x \rightarrow 0} \frac{x}{\sin x} \cdot (- \cos x \cdot x) = 0\]

$\ln f(x)$์˜ ๊ทนํ•œ์ด $0$์ด๋ฏ€๋กœ $f(x)$์˜ ๊ทนํ•œ์€ $1$์ด ๋œ๋‹ค! $\blacksquare$

$(\sin x)^{\tan x}$

$(\sin x)^x$์™€ ๋น„์Šทํ•˜์ง€๋งŒ ์ด๋ฒˆ์—๋Š” ์ง€์ˆ˜๊ฐ€ $\tan x$๊ฐ€ ๋˜์—ˆ๋‹ค!

๋ณธ๋ž˜ $\tan x$๊ฐ€ $x = \pi/2$ ์ง€์ ์—์„œ ์ •์˜๊ฐ€ ๋˜์ง€ ์•Š๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์œ„์˜ ํ•จ์ˆ˜๋Š” ํ•ด๋‹น ์ง€์ ์—์„œ ๊ฐ’์ด ์ •์˜๋œ๋‹ค!! ์–ด๋–ป๊ฒŒ ๋œ ๊ฑธ๊นŒ!!

์ผ๋‹จ $\sin x$๊ฐ€ $x = \pi/2$์—์„œ $1$์ด๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฒˆ์—๋Š” $1^{\infty}$์˜ ์ƒํ™ฉ์ด๋‹ค! ๋ฌผ๋ก  $x = 0$์—์„œ๋„ ์—ฐ์†์„ฑ์„ ์œ„ํ•œ ํ™•์žฅ์ด ํ•„์š”ํ•˜๊ธด ํ•˜๋‹ค.

์ด๋ฒˆ์—๋„ power form์˜ ๋ถ€์ •ํ˜• ๊ทนํ•œ์„ ํ•ธ๋“ค๋ง ํ•˜๋Š” ์ ‘๊ทผ์„ ์ ์šฉํ•˜๋ฉด ๋œ๋‹ค.

We will find the limit of $\ln f(x)$

\[\lim_{x \rightarrow 0} \ln f(x) = \lim_{x \rightarrow 0} \tan x \cdot \ln \sin x = \lim_{x \rightarrow 0} \frac{\ln \sin x}{1/\tan x}\]

์ด์ œ ๊ทนํ•œ์„ ์ฐพ๊ธฐ ์œ„ํ•ด ๋ฏธ๋ถ„ํ•˜์ž. ๋กœํ”ผํƒˆ์˜ ์ •๋ฆฌ๋ฅผ ์“ด๋‹ค.

\[\lim_{x \rightarrow 0} \frac{\ln \sin x}{1/\tan x} = \lim_{x \rightarrow 0} \frac{\cos x / \sin x}{- \sec^2 x / \tan^2 x} = \lim_{x \rightarrow 0} \frac{\cos^3 x}{\sin x} \cdot \tan^2 x = \lim_{x \rightarrow 0} \cos x \cdot \sin x = 0\]

$\ln f(x)$์˜ ๊ทนํ•œ๊ฐ’์ด $0$์ด๋ฏ€๋กœ $f(x)$์˜ ๊ทนํ•œ๊ฐ’์€ $1$์ด ๋œ๋‹ค. $\blacksquare$

Categories:

Updated: