Application of Derivatives: Problem Solving
볡μμ 곡νκ³ μλ μνκ³Όμ μ‘Έμ μνμ μν΄ νλΆ μν κ³Όλͺ©λ€μ λ€μ 곡λΆνκ³ μμ΅λλ€. 곡λΆνλ©΄μ μ¬λ°μ΄ 보μλ λ¬Έμ λ€κ³Ό νμ΄λ€μ λͺ¨μμ μ 리ν ν¬μ€νΈ μ λλ€. λ―Έμ λΆν ν¬μ€νΈ μ 체 보기
Geometric Mean
The geometric mean of two positive numbers $a$ and $b$ is the number $\sqrt{ab}$. Show that the value of $c$ in the conclusion of the Mean Value Theorem fro $f(x) = 1/x$ on an interval of positive numbers $[a, b]$ is $c = \sqrt{ab}$.
MVTλ₯Ό μΆ©μ€ν μ μ©νλ©΄ λλ λ¬Έμ .
By MVT, there exist some $c$ on $[a, b]$ s.t. $fβ(c) = \dfrac{f(b) - f(a)}{b-a}$.
\[f'(c) = \frac{1/b - 1/a}{b - a} = -ab\]μ΄λ, $fβ(x) = - 1 / x^2$μ΄λ―λ‘ $c = \sqrt{ab}$κ° λλ€. $\blacksquare$
κΈ°ν νκ· μ μ κΈ°νλΌκ³ λΆλ₯΄λκ°?
μ§κΈκΉμ§ μ΄λ©΄μ βκΈ°ν νκ· βλ₯Ό κ½€ λͺλ² λ§μ£Όμ³€λλ° μ΄λ²μ λ¬Έμ λ₯Ό νλ©΄μ λ¬Έλ μ μ΄κ±Έ βκΈ°νβ νκ· μ΄λΌκ³ λΆλ₯΄λμ§ κΆκΈν΄μ‘λ€.
Quora - Why is βgeometric meanβ called geometric?μμ λ§μ‘±ν λ§ν λ΅λ³μ μ°Ύμλ€ γ γ κ·Έλ¦¬κ³ μ λ§ κΈ°ννμμ μ λν κ²μ΄ λ§λ€!!
μ§μ¬κ°νμ κ° λ³μ΄ $a$, $b$ μΌλ, κ·Έ μ§μ¬κ°νμ λμ΄λ $ab$μ΄λ€. κ·Έλ°λ° κ·Έ μ§μ¬κ°νμ΄λ μ νν λκ°μ λμ΄λ₯Ό κ°λ μ μ¬κ°νμ ν λ³μ κΈΈμ΄ $x$λ₯Ό ꡬνκΈ° μν΄ $x^2 = ab$λ‘ λκ³ , μ΄λμ $x$ κ°μΈ $x = \sqrt{ab}$λ₯Ό κΈ°ν νκ· μΌλ‘ λλ€κ³ νλ€.
μκ±Έ μ μ‘면체, κ·Έ μ΄μμ μ°¨μμΌλ‘λ κΈ°ν νκ· μ νμ₯ν μ μλ€.
κ·ΈλΌ μ‘°ν νκ· μ μ μ‘°ν νκ· μΈκ°?
κ°μκΈ° βμ‘°ν νκ· βμ μ κ·Έλ΄κΉβ¦λΌλ μκ°λ νκ² λμλ€ γ γ γ
Harmonic Mean.
\[\left(\frac{1/a + 1/b}{2}\right)^{-1} = \frac{2ab}{a+b}\]μ건 $\{ 1, 1/3, 1/5, 1/7, β¦ \}$μ κ°μ΄ μμκ° λ±μ°¨μμ΄μ μ΄λ£¨λ βμ‘°ν μμ΄βμμ μμ΄μ μ°μν μΈ κ° $a$, $b$, $c$μμ $b$μ κ°μ μ‘°ν μ€ν λλ μ‘°ν νκ· μ΄λΌκ³ νλ€.
μ΄λ $b$μ $a$, $c$μ κ°μΌλ‘ νννλ©΄ μ‘°ν νκ· κ³Ό κ°μ ννκ° μ λλλ€.
Cauchyβs Mean Value Theorem
Suppose functions $f$ and $g$ are continuous on $[a, b]$ and differentiable throughout $(a, b)$ and also suppose $gβ(x) \ne 0$ throughout $(a, b)$. Then there exists a number $c$ in $(a, b)$ at which
\[\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}\]μΌλ¨ μ½μμ μ λ¦¬κ° μ΄λ€ μλ―Έλ₯Ό κ°μ§λμ§λΆν° μ΄ν΄ν΄λ³΄μ. ν¨μ $f$μ $g$κ° κ°κ° parametric functionμ $y$, $x$λ₯Ό νννλ ν¨μλΌκ³ ν΄λ³΄μ. (μ°Έκ³ λ‘ Parametric Functionμ λ―Έμ 2 λ΄μ©μ΄λ€.)
\[\begin{aligned} x &= g(t) \\ y &= f(t) \end{aligned}\]μ΄λ, $t=a$μ $t=b$μ λν νκ· λ³νμ¨μ ꡬνλ©΄ μλμ κ°μ κ²μ΄λ€.
\[\text{slope} = \frac{f(b) - f(a)}{g(b) - g(a)}\]κ·Έλ°λ° μ½μμ μ 리λ μ΄ slopeμ κΈ°μΈκΈ°μ λμΌν κΈ°μΈκΈ°λ₯Ό κ°μ§ μ μ μ΄ $t: (a, b)$ λ²μ μμ μ΄λ€ $t=c$μ μ‘΄μ¬ν¨μ λ§νλ€.
μ¦,
\[\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}\]μΈ μμ $t=c$λ₯Ό μ°Ύμ μ μλ€λ κ²μ΄λ€.
μκ±Έ μκ°μ μΌλ‘ νμΈνλ©΄ μ΄λ° λλμ΄λ€.
μ¦λͺ μ MVTλ₯Ό νμ©νλ©΄ λλλ°, κ°λ¨ν κ² κ°μμ ν¨μ€β¦!
Proof of lβhΓ΄pitalβs rule
μΌλ¨ μ¦λͺ μ νκΈ° μ μ μν©λΆν° μΈν νμ.
Let assume, $f(a) = g(a) = 0$, and $gβ(a) \ne 0$. Then,
\[\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}\]μΌλ¨ $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$λ $0/0$ κΌ΄μ λΆμ νμΈ μν©μ΄λ€.
ν¨μ«κ°μ κ·Ήνμ 0μΌλ‘ 보λ΄λ $a$λΌλ κ°μ μ€λ₯Έμͺ½μμ $a$λ‘ μ κ·Όνλ $x \rightarrow a^{+}$ μν©μ μ΄ν΄λ³΄μ. λ°λμΈ $x \rightarrow x^{-}$ μν©μ λμΉμ΄λΌμ μλ΅νλ€.
κ·Έλ €λ©΄ μ½μμ μ 리μ λ°λΌ $(a, x)$ μ¬μ΄μ μλ μμ λ§μ‘±νλ $c$κ° μ‘΄μ¬ν¨μ΄ 보μ₯λλ¨.
\[\frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)}\]μ΄λ, $f(a) = g(a) = 0$μ΄λ―λ‘
\[\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}\]μ΄μ μμͺ½μ κ·Ήνμ μ·¨νλ©΄
\[\lim_{x \rightarrow a^{+}} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a^{+}} \frac{f'(c)}{g'(c)}\]μμ $x \rightarrow a^{+}$κ° λλ©΄, $(a, x)$ μ¬μ΄μ μλ $c$λ $c \rightarrow a$κ° λλ€. λ°λΌμ
\[\lim_{x \rightarrow a^{+}} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a^{+}} \frac{f'(c)}{g'(c)} = \lim_{x \rightarrow a^{+}} \frac{f'(a)}{g'(a)}\]$\blacksquare$
Variation of Sine Function
$(\sin x)^x$
μ°μ΅ λ¬Έμ μ λμλ ν¨μλ€. μΌλ¨ λ¬Έμ μμλ κ·Έλνμ κ°νμ κ·Έλ €λ³΄κ³ , ν¨μκ° $x=0$μμ μ°μμ΄κΈ° μν΄ κ°μ ΈμΌ ν ν¨μ«κ°μ λν΄μ λ¬Όμ΄λ΄€λ€.
$x=0$μμλ $0^0$ κΌ΄μ΄ λλλ°, Ch 1: Limit and Continuityμμλ λ΄€λ―μ΄ $0^0$μ κ·Ήνμ κ°μ $1$λ‘ ν λΉ νμλ€. μ€μ λ‘ ν¨μ κ·Έλνλ $x = 0$μμ $1$μ κ°μ κ°μ§λ€!
λ¬Όλ‘ $0^0$μ κ·Ήνμ΄ $1$μ΄μμΌλ $(\sin x)^x$μ κ·Ήνλ $1$μ΄ λμ΄μΌ νλ€λ 건 μλ°ν μ¦λͺ μ΄ μλλ€. μλ°ν μ¦λͺ νκΈ° μν΄μ power formμ λΆμ νμ λν κ·Ήνμ νμΈνλ©΄ λλ€. (κ·Έλ¦¬κ³ μ΄λ λ‘νΌνμ μ°κ² λλ€.)
Let $f(x) = (\sin x)^x$, we will find the limit of $\ln f(x)$.
\[\lim_{x \rightarrow 0} \ln f(x) = \lim_{x \rightarrow 0} x \cdot \ln \sin x = \lim_{x \rightarrow 0} \frac{\ln \sin x}{1/x}\]μ΄μ $0/0$ κΌ΄μ κ·Ήνμ΄λ λ‘νΌν μ 리λ₯Ό μ μ©νλ©΄ λλ€ γ γ
\[\lim_{x \rightarrow 0} \frac{\ln \sin x}{1/x} \Rightarrow \lim_{x \rightarrow 0} \frac{\cos x/\sin x}{- 1/x^2} = \lim_{x \rightarrow 0} \frac{x}{\sin x} \cdot (- \cos x \cdot x) = 0\]$\ln f(x)$μ κ·Ήνμ΄ $0$μ΄λ―λ‘ $f(x)$μ κ·Ήνμ $1$μ΄ λλ€! $\blacksquare$
$(\sin x)^{\tan x}$
$(\sin x)^x$μ λΉμ·νμ§λ§ μ΄λ²μλ μ§μκ° $\tan x$κ° λμλ€!
λ³Έλ $\tan x$κ° $x = \pi/2$ μ§μ μμ μ μκ° λμ§ μλλ€. κ·Έλ¬λ μμ ν¨μλ ν΄λΉ μ§μ μμ κ°μ΄ μ μλλ€!! μ΄λ»κ² λ κ±ΈκΉ!!
μΌλ¨ $\sin x$κ° $x = \pi/2$μμ $1$μ΄κΈ° λλ¬Έμ μ΄λ²μλ $1^{\infty}$μ μν©μ΄λ€! λ¬Όλ‘ $x = 0$μμλ μ°μμ±μ μν νμ₯μ΄ νμνκΈ΄ νλ€.
μ΄λ²μλ power formμ λΆμ ν κ·Ήνμ νΈλ€λ§ νλ μ κ·Όμ μ μ©νλ©΄ λλ€.
We will find the limit of $\ln f(x)$
\[\lim_{x \rightarrow 0} \ln f(x) = \lim_{x \rightarrow 0} \tan x \cdot \ln \sin x = \lim_{x \rightarrow 0} \frac{\ln \sin x}{1/\tan x}\]μ΄μ κ·Ήνμ μ°ΎκΈ° μν΄ λ―ΈλΆνμ. λ‘νΌνμ μ 리λ₯Ό μ΄λ€.
\[\lim_{x \rightarrow 0} \frac{\ln \sin x}{1/\tan x} = \lim_{x \rightarrow 0} \frac{\cos x / \sin x}{- \sec^2 x / \tan^2 x} = \lim_{x \rightarrow 0} \frac{\cos^3 x}{\sin x} \cdot \tan^2 x = \lim_{x \rightarrow 0} \cos x \cdot \sin x = 0\]$\ln f(x)$μ κ·Ήνκ°μ΄ $0$μ΄λ―λ‘ $f(x)$μ κ·Ήνκ°μ $1$μ΄ λλ€. $\blacksquare$