์˜์—ญ ๋‚ด๋ถ€์˜ ํšŒ์ „(circulation)๊ณผ ์œ ์ถœ(flux)์„ ๊ทธ๋ฆฐ ์ •๋ฆฌ์˜ ์„ ์ ๋ถ„์œผ๋กœ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ๐ŸŒŠ

6 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฏธ์ ๋ถ„ํ•™ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

๋“ค์–ด๊ฐ€๋ฉฐ

๋ฐœ์‚ฐ๊ณผ ํšŒ์ „์— ๋Œ€ํ•ด์„œ ๋ฐฐ์› ๋‹ค๋ฉด, ๊ทธ๋ฆฐ ์ •๋ฆฌ๋ฅผ ์ด ๋‘˜์„ ์‚ฌ์šฉํ•ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!

Vector form of Greenโ€™s Theorem

๊ทธ๋ฆฐ ์ •๋ฆฌ(Greenโ€™s Theorem)๋Š” 2์ฐจ์› ํ‰๋ฉด ์œ„์˜ ๋ฒกํ„ฐ์žฅ $\mathbf{F}(x, y)$์— ๋Œ€ํ•œ ์„ ์ ๋ถ„์ด ๊ทธ๊ฒƒ์˜ ์„ฑ๋ถ„ ๋ฒกํ„ฐ์˜ ํŽธ๋ฏธ๋ถ„์„ ์กฐํ•ฉํ•œ ์–ด๋–ค ์ด์ค‘ ์ ๋ถ„๊ณผ ์—ฐ๊ฒฐํ•˜๋Š” ์ •๋ฆฌ์˜€๋‹ค.

[๊ทธ๋ฆฐ ์ •๋ฆฌ]

\[\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C P \, dx + Q \, dy = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, dA\]

๊ทธ๋Ÿฐ๋ฐ ์ด ์ •๋ฆฌ๋ฅผ 3์ฐจ์› ๊ณต๊ฐ„์—์„œ $z$ ์ขŒํ‘œ๊ฐ€ 0์ธ 3์ฐจ์› ๋ฒกํ„ฐ์žฅ $\mathbf{F}(x, y, 0)$์œผ๋กœ ๋ฐ”๊พธ์–ด ์‚ดํŽด๋ณด๋ฉด, ๊ทธ๋ฆฐ ์ •๋ฆฌ๋ฅผ ๋ฐœ์‚ฐ(div)๊ณผ ํšŒ์ „(curl)๊ณผ ์—ฐ๊ฒฐ ํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๐Ÿ˜ฎ


๋‚ด์šฉ์„ ์ •๋ฆฌํ•˜๊ธฐ ์ „์— dimenchoi๋‹˜์˜ ๊ทธ๋ฆฐ ์ •๋ฆฌ์˜ ์ง๊ด€์ ์ธ ์ดํ•ด์™€ ์ฆ๋ช…(Greenโ€™s Theorem) ํฌ์ŠคํŠธ๊ฐ€ ์ด ๋ถ€๋ถ„์„ ์ดํ•ดํ•˜๋Š”๋ฐ ๋งŽ์€ ๋„์›€์ด ๋˜์—ˆ์Œ์„ ๋ฐํžŒ๋‹ค. ์•„๋ž˜ ๊ธ€์„ ์ฝ๊ธฐ ์ „์— ์œ„์˜ ํฌ์ŠคํŠธ๋ฅผ ๋จผ์ € ์ฝ๊ณ  ์˜ค๊ธธ ๊ฐ•์ถ” ํ•œ๋‹ค!!

Tangential Form

2์ฐจ์›์˜ ๋ฒกํ„ฐ์žฅ์— $z=0$์ธ $z$ ์„ฑ๋ถ„์„ ์ถ”๊ฐ€ํ•˜์—ฌ 3์ฐจ์› ๋ฒกํ„ฐ์žฅ $\mathbf{F} = \left< x, y, 0\right>$์„ ์ƒ๊ฐํ•ด๋ณด์ž. ์ด๋•Œ, ์ด ๋ฒกํ„ฐ์žฅ์˜ curl ๋ฒกํ„ฐ๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\text{curl } \mathbf{F} = \left|\begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P(x, y) & Q(x, y) & 0 \end{matrix}\right| = \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}\]

์š”๊ธฐ์— $z$ ์„ฑ๋ถ„๋งŒ ์žˆ๋Š” ๋ฒกํ„ฐ์— unit vector $\mathbf{k}$๋ฅผ ๋‚ด์ ํ•˜๋ฉด, ์ต์ˆ™ํ•œ ์‹์ด ๋‚˜์˜จ๋‹ค.

\[(\text{curl } \mathbf{F}) \cdot \mathbf{k} = \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\]

์š”๊ฑด ๊ทธ๋ฆฐ ์ •๋ฆฌ์—์„œ ์ด์ค‘ ์ ๋ถ„์— ๋“ค์–ด๊ฐ€๋Š” ์•„์ฃผ ์ต์ˆ™ํ•œ ํ˜•ํƒœ๋‹ค!! ๊ทธ๋ž˜์„œ ์‹์„ ์ •๋ฆฌํ•˜๋ฉดโ€ฆ

\[\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, dA = \iint_D \left( \text{curl } \mathbf{F} \right) \cdot \mathbf{k} \, dA\]

Gilbert Strang - Calculus Vol 3.

Tangential Form์€ ์˜์—ญ $D$ ๋‚ด๋ถ€์—์„œ์˜ ํšŒ์ „(curl)์˜ ์ดํ•ฉ์ด ๊ฒฝ๊ณ„ ๊ณก์„  $C$ ์œ„์—์„œ์˜ tangential integral๋กœ ๋Œ€์‹  ๊ตฌํ•  ์ˆ˜ ์žˆ์Œ์„ ๋งํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

Normal Form

๊ทธ๋ฆฐ ์ •๋ฆฌ์˜ Normal Form์€ ์„ ์ ๋ถ„์„ ๊ณก์„ ์˜ ์ง„ํ–‰ ๋ฐฉํ–ฅ $d\mathbf{r}$๊ณผ ์ˆ˜์ง์ธ ๋ฒกํ„ฐ์— ๋Œ€ํ•ด์„œ ์„ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

Gilbert Strang - Calculus Vol 3.

\[\oint_C \mathbf{F} \cdot \mathbf{N} \, ds\]

๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ ๊ณก์„  $C$๊ฐ€ ๋งŒ๋“œ๋Š” ์˜์—ญ $D$๋ฅผ ์ถœ์ž…ํ•˜๋Š” ์œ ์ฒด์˜ ํ๋ฆ„์ธ ๋ฐœ์‚ฐ(divergence)์˜ ์ดํ•ฉ์˜ ๊ฐ’๊ณผ ๋™์ผํ•˜๋‹ค.

\[\oint_C \mathbf{F} \cdot \mathbf{N} \, ds = \iint_D \left( \nabla \cdot \mathbf{F} \right) \, dA = \iint_D \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \, dA\]

์œ„์˜ ์‹์ด ์–ด๋–ป๊ฒŒ ์œ ๋„๋˜๋Š”์ง€๋ฅผ ์ข€๋” ์‚ดํŽด๋ณด์ž.

๋จผ์ €, ๊ณก์„  $C$๊ฐ€ ์•„๋ž˜์™€ ๊ฐ™์€ ๋ฒกํ„ฐ ๋งค๊ฐœ๋ฐฉ์ •์‹์ด๋ผ๊ณ  ์ƒ๊ฐํ•ด๋ณด์ž.

\[\mathbf{r}(t) = x(t) \, \mathbf{i} + y(t) \, \mathbf{j}\]

์ด๋•Œ, ๊ณก์„ ์— ์ ‘ํ•˜๋Š” Unit Tangent Vector $\mathbf{T}(t)$๋ฅผ ๊ตฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\mathbf{T}(t) = \frac{x'(t)}{\left| \mathbf{r}'(t) \right|} \, \mathbf{i} + \frac{y'(t)}{\left| \mathbf{r}'(t) \right|} \, \mathbf{j}\]

๊ทธ๋ฆฌ๊ณ  ์ด์— ๋Œ€ํ•œ ๋…ธ๋ฉ€ ๋ฒกํ„ฐ $\mathbf{N}(t)$๋Š” $\mathbf{T}(t) \cdot \mathbf{N}(t) = 0$์ž„์„ ์ƒ๊ฐํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์ด ์œ ๋„๋œ๋‹ค.

\[\mathbf{N}(t) = \frac{y'(t)}{\left| \mathbf{r}'(t) \right|} \, \mathbf{i} - \frac{x'(t)}{\left| \mathbf{r}'(t) \right|} \, \mathbf{j}\]

์ด์ œ ๋‹ค์‹œ ์ ๋ถ„์‹์œผ๋กœ ๋Œ์•„์˜ค์ž. ์ ๋ถ„์‹์—์„œ ๋ฏธ์†Œ๊ธธ์ด๋Ÿ‰์„ ๊ณก์„ ์˜ ๋งค๊ฐœ ๋ณ€์ˆ˜๋กœ ๋‹ค์‹œ ์“ฐ๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\oint_C \mathbf{F} \cdot \mathbf{N} \, ds = \oint_C (\mathbf{F} \cdot \mathbf{N}) (t) \, \left| \mathbf{r}'(t) \right| \, dt\]

๊ทธ๋ฆฌ๊ณ  ์ด ์‹์„ ์ž˜ ์ •๋ฆฌํ•˜๋ฉดโ€ฆ

\[\begin{aligned} \oint_C \mathbf{F} \cdot \mathbf{N} \, ds &= \oint_C (\mathbf{F} \cdot \mathbf{N}) (t) \, \left| \mathbf{r}'(t) \right| \, dt \\ &= \oint_C \left( \frac{P(x, y) \cdot y'(t)}{\left| \mathbf{r}'(t) \right|} - \frac{Q(x, y) \cdot x'(t)}{\left| \mathbf{r}'(t) \right|} \right) \, \left| \mathbf{r}'(t) \right| \, dt \\ &= \oint_C P(x, y) \cdot y'(t) \, dt - Q(x, y) \cdot x'(t) \, dt \\ &= \oint_C P \, dy - Q \, dx \end{aligned}\]

๋งˆ์ง€๋ง‰ ์‹์„ $dx$, $dy$ ์ˆœ์„œ๋ฅผ ๋‹ค์‹œ ๋งž์ถ”๊ณ , ๊ทธ๋ฆฐ ์ •๋ฆฌ์˜ ํ˜•์‹์— ๋งž์ถฐ ํŽธ๋ฏธ๋ถ„์œผ๋กœ ๋‹ค์‹œ ์“ฐ๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} &\oint_C P \, dy - Q \, dx \\ &= \oint_C \left( - Q \, dx + P \, dy \right) \\ &= \iint_D \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \, dA \end{aligned}\]

๊ทธ๋ฆฌ๊ณ  ์œ„์˜ ๋งˆ์ง€๋ง‰ ์‹์€ ๋ฒกํ„ฐ์žฅ $\mathbf{F}$์— ๋ฐœ์‚ฐ(div) ์—ฐ์‚ฐ์„ ์ทจํ•œ $\text{div } \mathbf{F} = \nabla \cdot \mathbf{F}$์™€ ๊ฐ™๋‹ค.

$\blacksquare$

๋งบ์Œ๋ง

์ €๋Š” ์ฒ˜์Œ์— ๊ทธ๋ฆฐ ์ •๋ฆฌ๋ฅผ 2๊ฐ€์ง€ ํ˜•ํƒœ๋กœ ํฌํ•จํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐ›์•„๋“ค์ด๋Š”๊ฒŒ ํž˜๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.

Tangential Form์€ ๋‚˜์ค‘์— ์Šคํ† ์Šคํฌ ์ •๋ฆฌ๊ฐ€ ๋˜๊ณ , Normal Form์€ ๋‚˜์ค‘์— ๋ฐœ์‚ฐ ์ •๋ฆฌ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

Categories:

Updated: