2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

8 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)



Three Sylow Theorem์€ ์ด๊ณณ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.



Example.

A group of order 15 is not simple.

์—ฌ๊ธฐ์„œ์˜ โ€˜simpleโ€™์€ ์œ„์ˆ˜ 15๋ฅผ ๊ฐ–๋Š” ๊ตฐ์˜ normal subgroup์ด ์˜ค์ง trivial subgroup๋งŒ์„ ๊ฐ–๋Š”๋‹ค๋Š” ๋ง์ด๋‹ค. 1


Sol.

$15 = 5 \times 3$

Let $P_3$, $P_5$ be Sylow 3-subgroup & Sylow 5-subgroup.

We claim that either $P_3$ or $P_5$ is normal to $G$.


(proof by contradiction)

Supp. both $P_3$ and $P_5$ are not normal to $G$.


$P_5$์— ๋Œ€ํ•ด์„œ ๋จผ์ € ์‚ดํŽด๋ณด์ž.

๋จผ์ € 1st Sylow Thm์— ์˜ํ•ด $G$๋Š” ์œ„์ˆ˜๊ฐ€ 5์ธ subgroup์„ ์ ์–ด๋„ ํ•˜๋‚˜๋ฅผ ๊ฐ€์ง„๋‹ค.

๊ทธ๋ฆฌ๊ณ  3rd Sylow Thm์— ์˜ํ•ด (# of 5-subgroup)์€ mod 5์—์„œ 1๊ณผ ํ•ฉ๋™์ด๋‹ค.
๋”ฐ๋ผ์„œ (# of 5-subgroup)๋Š” 1 ๋„๋Š” 6 ๋˜๋Š” 11์ด๋‹ค.

์ด๋“ค ์ค‘, 1๋งŒ์ด 15๋ฅผ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ $G$๋Š” ์œ„์ˆ˜๊ฐ€ 5์ธ ๋‹จ ํ•˜๋‚˜์˜ 5-subgroup์„ ๊ฐ–๋Š”๋‹ค. (3rd Sylow Thm)

๊ทธ๋Ÿฌ๋‚˜ ๋งŒ์•ฝ $P_5$์ด ๋‹จ ํ•˜๋‚˜๋งŒ ์กด์žฌํ•œ๋‹ค๋ฉด, 2nd Sylow Thm์— ์˜ํ•ด ์ด๊ฒƒ์€ $P_5$๊ฐ€ normal subgroup์ž„์„ ์˜๋ฏธํ•œ๋‹ค.

$p$๊ฐ€ ๋™์ผํ•œ ๋‘ Sylow $p$-subgroup $P_5$, $P_5โ€™$์— ๋Œ€ํ•ด ๋‘˜์€ conjugate ๊ด€๊ณ„์ด๋‹ค.


์ด๋•Œ, $G$์— ๋Œ€ํ•œ inner auto-morphism์„ ์ƒ๊ฐํ•ด๋ณด์ž.

๊ทธ๋Ÿผ For $g \in G$์— ๋Œ€ํ•ด $\sigma_g(x) = gxg^{-1} \quad (\forall g \in G)$๋กœ homo-morphism์ด ์ •์˜๋œ๋‹ค.

์ด๋•Œ, $P_5$๋ฅผ $\sigma_g$์— ํƒœ์šฐ๊ฒŒ ๋˜์–ด ์–ป๋Š” $\sigma_g (P_5)$๋Š” 2nd Sylow Thm์— ์˜ํ•ด ์—ฌ์ „ํžˆ Sylow 5-subgroup์ด๋‹ค.

๋ชจ๋“  $g \in G$์— ๋Œ€ํ•ด $\sigma_g$๋ฅผ ๊ตฌํ•ด $P_5$๋ฅผ ํƒœ์›Œ๋„ ์—ฌ์ „ํžˆ $P_5$๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค.

๋”ฐ๋ผ์„œ $P_5$๋Š” normal subgroup์ด๋‹ค!


๋งˆ์ฐฌ๊ฐ€์ง€์˜ ๋ฐฉ๋ฒ•์œผ๋กœ $P_3$์— ๋Œ€ํ•ด์„œ๋„ ํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค.

3rd Sylow Thm์— ์˜ํ•ด (# of 3-subgroup)์€ 1, 4, 7, 11, 14์ด๋‹ค. ์ด์ค‘์— 15๋ฅผ ๋‚˜๋ˆ„๋Š” ๊ฒƒ์€ 1 ๋ฟ์ด๋‹ค.

๋”ฐ๋ผ์„œ $G$์—์„œ $P_3$๋Š” ๋‹จ ํ•˜๋‚˜ ๋ฟ์ด๋‹ค. ๋”ฐ๋ผ์„œ $P_3$๋Š” normal subgroup์ด๋‹ค.


๋”ฐ๋ผ์„œ โ€œboth $P_3$ and $P_5$ are not normal to $G$.โ€๋ผ๋Š” ๋ช…์ œ๋Š” ๊ฑฐ์ง“์ด๋‹ค!!

โ€œeither $P_3$ or $P_5$ is normal to $G$.โ€๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ ํ‘œํ˜„์ด๋‹ค.

๋”ฐ๋ผ์„œ $G$๋Š” trivial subgroup ์™ธ์—๋„ ๋‹ค๋ฅธ normal subgroup์„ ๊ฐ–๋Š”๋‹ค!! $\blacksquare$



Lemma 37.5

Lemma.

Let $H, K \trianglelefteq G$.

Supp. $H \cap K = \{ e \}$, and $H \lor K = G$.

Then, $H \times K \cong G$.


proof.

๋จผ์ € $hk = kh$์ž„์„ ๋ณด์ด์ž.

\[\begin{aligned} hk(kh)^{-1} &= hkh^{-1}k^{-1} \\ &= (hkh^{-1})k^{-1} \in K \\ &= h(kh^{-1}k^{-1}) \in H \end{aligned}\]

๋”ฐ๋ผ์„œ $hk(kh)^{-1} \in H \cap K$์ด๋‹ค.

์ด๋•Œ, ์กฐ๊ฑด์—์„œ $H \cap K = \{ e \}$๋ผ๊ณ  ํ–ˆ์œผ๋ฏ€๋กœ

$hk(kh)^{-1} = e$์ด๊ณ , ๋”ฐ๋ผ์„œ $hk = kh$์ด๋‹ค.


$H \times K \cong G$๋ฅผ ๋ณด์ด๊ธฐ ์œ„ํ•ด homomoprhism $\phi$๋ฅผ ํ•˜๋‚˜ ์ •์˜ํ•˜์ž.

\[\begin{aligned} \phi: H \times K &\longrightarrow G \\ (h, k) &\longmapsto hk \end{aligned}\]

๊ทธ๋Ÿฌ๋ฉด, $\phi$์— ๋Œ€ํ•ด ์•„๋ž˜๊ฐ€ ์„ฑ๋ฆฝํ•˜๋ฏ€๋กœ

\[\begin{aligned} \phi((h, k)(h', k')) &= \phi(hh', kk') \\ &= hh'kk' = h(h'k)k' \\ &= hkh'k' \\ &= \phi(h, k)\phi(h', k') \end{aligned}\]

$\phi$๋Š” homomorphism์ด๋‹ค.


์ด์ œ $\phi$์˜ kernel์— ๋Œ€ํ•ด ์ƒ๊ฐํ•ด๋ณด์ž.

๋งŒ์•ฝ $\phi(h, k) = e$๋ผ๋ฉด, $hk = e$์ธ ์›์†Œ๊ฐ€ $\ker \phi$์— ์†ํ•  ๊ฒƒ์ด๋‹ค.

์ด๋•Œ, $h = k^{-1}$์ด๋ฏ€๋กœ $h = k^{-1} \in H \cap K$์ด๋‹ค. ๋”ฐ๋ผ์„œ $h = k^{-1} = e$์ด๋‹ค.

๋”ฐ๋ผ์„œ $\ker \phi = \{ (e, e) \}$ ํ•˜๋‚˜ ๋ฟ์ด๋ฏ€๋กœ, $\phi$๋Š” 1-1์ด๋‹ค.


์กฐ๊ฑด์—์„œ $H \trianglelefteq G$๋ผ๊ณ  ํ–ˆ์œผ๋ฏ€๋กœ $H \lor K = HK$๊ฐ€ ๋œ๋‹ค. (by Lemma 34.4 & join)

๋˜, ๊ฐ€์ •์—์„œ $H \lor K = G$๋ผ๊ณ  ํ–ˆ์œผ๋ฏ€๋กœ, $H \lor K = HK = G$๊ฐ€ ๋œ๋‹ค.

๋”ฐ๋ผ์„œ $\phi$์˜ ์ด๋ฏธ์ง€์ธ $\phi[H \times K] = HK$๊ฐ€ ๊ณง $G$ ์ „์ฒด๊ฐ€ ๋œ๋‹ค.

๋”ฐ๋ผ์„œ $\phi$๋Š” onto์ด๋‹ค.


$\phi$๊ฐ€ homo-, 1-1 & onto์ด๋ฏ€๋กœ $\phi$๋Š” isomorphism์ด๋‹ค.

๋”ฐ๋ผ์„œ $H \times K \cong G$์ด๋‹ค!

์ด ๋ช…์ œ๊ฐ€ Lemma์ธ ์ด์œ ๋Š” ์•„๋ฌด๋ž˜๋„ Isomoprhism ํŒŒํŠธ์—์„œ ๋‹ค๋ค˜๋˜ Lemma 34.4๋กœ๋ถ€ํ„ฐ ์‰ฝ๊ฒŒ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ ๊ฐ™๋‹ค.

๋˜ ์›๋ž˜ ๋ชฉํ‘œ์ธ $H \times K \cong G$๋Š” ์‚ฌ์‹ค $H \times K \cong G = H \lor K = HK$์ด๋ฏ€๋กœ ์‚ฌ์‹ค์ƒ $H \times K \cong HK$์ž„์„ ๋ณด์ด๋Š” ๋ช…์ œ์˜€๋‹ค.



Theorem.

Let $p$ be a prime,

then every group $G$ of order $p^2$ is abelian.

proof.

$G$๊ฐ€ cyclic์ด๋ฉด ๋‹น์—ฐํžˆ ๊ฐ€ํ™˜์ด๋ฏ€๋กœ, $G$๊ฐ€ cyclic group์ด ์•„๋‹ˆ๋ผ๊ณ  ๊ฐ€์ •ํ•˜์ž.

๊ทธ๋ฆฌ๊ณ  1st Sylow Thm์— ์˜ํ•ด $G$์—๋Š” $1, p, p^2$์˜ ์œ„์ˆ˜๋ฅผ ๊ฐ–๋Š” subgroup์ด ์กด์žฌํ•œ๋‹ค.

Let $a$ be an elt of $G$ of order $p$. (Cauchy์˜ ์ •๋ฆฌ์— ์˜ํ•ด ์กด์žฌ์„ฑ์ด ๋ณด์žฅ)

๊ทธ๋Ÿฌ๋ฉด,

\[\left<a\right> = \{ e, a, a^2, \dots, a^{p-1} \} < G\]

$b \in G \; \setminus \left<a\right>$์ธ ์›์†Œ๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

๋‘ ์›์†Œ $a$, $b$๋กœ ๋งŒ๋“  ์ˆœํ™˜๊ตฐ $\left<a\right>$, $\left<b\right>$๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

์ด๋•Œ, $\left<a\right> \cap \left<b\right> = \{ e \}$์—ฌ์•ผ ํ•œ๋‹ค.

๋งŒ์•ฝ $c \ne e \in \left<a\right> \cap \left<b\right>$๋ผ๋ฉด, $c$๋กœ $\left<a\right>$๋„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๊ณ , $\left<b\right>$๋„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ $\left<a\right> = \left<b\right>$๊ฐ€ ๋œ๋‹ค. ์ด๊ฒƒ์€ $b \notin \left<a\right>$์— ๋ชจ์ˆœ์ด๋‹ค.


1st Sylow Thm์˜ ๋‘๋ฒˆ์งธ ์ง„์ˆ ์— ์˜ํ•ด $\left<a\right>$๋Š” ์œ„์ˆ˜ $p^2$์„ ๊ฐ–๋Š” $G$์˜ subgroup์— ๋Œ€ํ•ด normal subgroup์ด๋‹ค. ์ด๋•Œ, $G$์—์„  $G$ ๋งŒ์ด ์œ„์ˆ˜ $p^2$๋ฅผ ๊ฐ€์ง€๋ฏ€๋กœ $\left<a\right> \trianglerighteq G$์ด๋‹ค.

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $\left<b\right>$ ์—ญ์‹œ $G$์— normal subgroup์ด๋‹ค.


์ด๋ฒˆ์—๋Š” $\left<a\right> \lor \left<b\right>$๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

$\left<a\right> \lor \left<b\right>$์—์„œ $\left<a\right>$๋Š” proper subgroup์ด๋‹ค.

์ฆ‰, $\left<a\right> \subset \left<a\right> \lor \left<b\right>$์ด๋‹ค.

์ด๋•Œ, $\left<a\right>$์˜ ์œ„์ˆ˜๊ฐ€ $p$์ด๋ฏ€๋กœ $\left<a\right> \lor \left<b\right>$์˜ ์œ„์ˆ˜๋Š” $p^2$์ด์–ด์•ผ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ $\left<a\right> \lor \left<b\right> = G$์ด๋‹ค.


์šฐ๋ฆฌ๊ฐ€ ์œ„์ˆ˜ $p^2$์ธ $G$์—์„œ ์–ป์€ ์‚ฌ์‹ค์„ ์ •๋ฆฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

  • $\left<a\right>, \left<b\right> \trianglerighteq G$
  • $\left<a\right> \cap \left<b\right> = \{ e \}$
  • $\left<a\right> \lor \left<b\right> = G$

๋”ฐ๋ผ์„œ ์•ž์„œ ์‚ดํŽด๋ณธ Lemma์— ๋”ฐ๋ฅด๋ฉด

$G \cong \left<a\right> \times \left<b\right> \cong \mathbb{Z}_p \times \mathbb{Z}_p$์ด๋‹ค.

์ฆ‰, $G$๊ฐ€ ๋‘ cyclic group์˜ direct produce์™€ ๋™ํ˜•์ด๋ฏ€๋กœ $G$๋Š” ๊ฐ€ํ™˜๊ตฐ์ด๋‹ค!! $\blacksquare$




์•„์ง Sylow Theorem์— ๋Œ€ํ•œ Application์ด ๋” ๋‚จ์•˜๋‹คโ€ฆ

Sylow Theorem - Application 2์—์„œ ํ™•์ธํ•˜์ž.



  1. index 2๋ฅผ ๊ฐ–๋Š” simple subgroup๊ณผ ํ—ท๊ฐˆ๋ฆฌ์ง€ ๋ง์ž!ย