2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

12 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)



Three Sylow Theorem์€ ์ด๊ณณ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.



Theorem 37.7

Theorem 37.7

For a group of order $pq$ ($p<q$ are prime)

1. is not simple.

2. If $q \not\equiv 1$ (mod $p$), then $G$ is cyclic.


proof.

[์ฒซ๋ฒˆ์งธ ๋ช…์ œ]

Let $n$ be (# of Sylow $q$-subgroups) of $G$,

then by 3rd Sylow Theorem

  • $n \mid (\lvert G \rvert = pq)$
  • $n \equiv 1$ (mod $q$)

๊ทธ๋Ÿฌ๋ฉด, $n$์€ $n = kq + 1$์˜ ๊ผด์ด ๋  ๊ฒƒ์ด๋‹ค.

๋”ฐ๋ผ์„œ

\[\begin{aligned} &n = kq + 1 \\ &\implies (kq + 1) \mid pq \\ &\implies (kq + 1) \mid p \quad (\because (kq+1) \not\mid q) \\ &\implies (kq+1) = 1 \quad \textrm{or} \quad (kq+1) = p \end{aligned}\]

๋งŒ์•ฝ $(kq+1) = p$๋ผ๊ณ  ๊ฐ€์ •ํ•˜์ž.

์ด๋•Œ, $k \ge 1$๊ฐ€ ๋˜์–ด์•ผ ํ•˜๋Š”๋ฐ, ์ด ๊ฒฝ์šฐ $p > q$๊ฐ€ ๋˜๋ฏ€๋กœ ๋ช…์ œ์˜ ์กฐ๊ฑด์— ๋ชจ์ˆœ์ด๋‹ค.

๋”ฐ๋ผ์„œ $(kq+1) = 1$์ด๋‹ค.


์ด ์‚ฌ์‹ค์€ $n=1$์ด๋ผ๋Š” ๊ฒƒ์ด๋ฏ€๋กœ $G$๋Š” ์˜ค์ง ํ•˜๋‚˜์˜ Sylow q-subgroup์„ ๊ฐ€์ง„๋‹ค๋Š” ๋ง์ด๋‹ค.

๋˜ํ•œ, ์ด๊ฒƒ์€ ๊ทธ Sylow $q$-subgroup์ด normal subgroup์ž„์„ ๋งํ•œ๋‹ค!!

๋”ฐ๋ผ์„œ $G$๋Š” not simple์ด๋‹ค! $\blacksquare$

[๋‘๋ฒˆ์งธ ๋ช…์ œ]

Supp. $q \not\equiv 1$ (mod $p$).

We will show that there exist only Sylow $p$-subgroup of $G$ and it is normal.


Let $m$ be a (# of Sylow $p$-subgroup).

We will show that $m=1$

By 3rd Sylow Theorem

  • $m \mid (\lvert G \rvert = pq)$
  • $m \equiv 1$ (mod $p$)

๋”ฐ๋ผ์„œ $m = kp + 1$์ด๊ณ , ์ฒซ๋ฒˆ์งธ ๋ช…์ œ์—์„œ์™€ ๋™์ผํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ

$kp + 1 = 1$ ๋˜๋Š” $kp + 1 = q$์ด๋‹ค.


๋งŒ์•ฝ $kp + 1 = q$๋ผ๋ฉด, ์ด๊ฒƒ์€ ๋ช…์ œ์—์„œ ๊ฐ€์ •ํ•œ $q \not\equiv 1$ (mod $p$) ์กฐ๊ฑด์— ๋ชจ์ˆœ๋œ๋‹ค!

๋”ฐ๋ผ์„œ $m = kp + 1 = 1$์ด๊ณ , Sylow $p$-subgroup์˜ ์ˆ˜๋Š” ๋‹จ ํ•˜๋‚˜์ด๋‹ค.

๋”ฐ๋ผ์„œ Sylow $p$-subgroup์€ normal subgroup์ด๋‹ค.


Let $H$ be a Sylow $p$-subgroup, and $K$ be a Sylow $q$-subgroup.

์•ž์—์„œ์˜ ๋…ผ์˜๋ฅผ ํ†ตํ•ด $H \trianglelefteq G$์ž„์„ ๋ณด์˜€๊ณ , ์ฒซ๋ฒˆ์งธ ๋ช…์ œ๋ฅผ ์ฆ๋ช…ํ•˜๋Š” ๊ณผ์ •์— $K \trianglelefteq G$์ž„์„ ๋ณด์˜€๋‹ค.

$H \cap K$์€ $H \cap K \le H$, $H \cap K \le K$์ด๋ฏ€๋กœ, Lagrange Thm์— ์˜ํ•ด $\lvert H \cap K \rvert = 1$์ด๋‹ค.

๋˜ํ•œ, $H \lor K$๋Š” $H$, $K$๋ฅผ ์™„์ „ํžˆ ํฌํ•จํ•˜๋Š” $G$์˜ ๋ถ€๋ถ„๊ตฐ์ด๋ฏ€๋กœ ์œ„์ˆ˜๊ฐ€ $pq$๋ฅผ ๋‚˜๋ˆˆ๋‹ค.

๋”ฐ๋ผ์„œ $H \lor K = G$์ด๋‹ค.


๊ทธ๋Ÿฌ๋ฉด, Lemma 37.5์— ์˜ํ•ด $H \times K \cong G$์ด๋‹ค.

$H$, $K$๊ฐ€ cyclic group์ด๋ฏ€๋กœ (์œ„์ˆ˜๊ฐ€ ์†Œ์ˆ˜ $p$์ด๋ฏ€๋กœ cyclic์ด ๋ณด์žฅ๋œ๋‹ค.)

$H \times K$ ์—ญ์‹œ cyclic์ด๋‹ค.

๋”ฐ๋ผ์„œ ๋™ํ˜•์ธ $G$ ์—ญ์‹œ cyclic์ด๋‹ค. $\blacksquare$



Lemma 37.8

Lemma 37.8

Let $H$, $K$ be finite subgroups of $G$.

Then,

\[\lvert HK \rvert = \dfrac{\lvert H \rvert \times \lvert K \rvert}{\lvert H \cap K \rvert}\]

$\lvert HK \rvert$์˜ ์ƒํ•œ์„ ์ƒ๊ฐํ•ด๋ณด์ž.
$hk = hโ€™kโ€™$์ธ ๊ฒฝ์šฐ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด, $\lvert HK \rvert = \lvert H \rvert \times \lvert K \rvert$๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค.

๋งŒ์•ฝ $hk = hโ€™kโ€™$์ธ ๊ฒฝ์šฐ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค๋ฉด, ๊ทธ๊ฒƒ์€ ์–ผ๋งˆ๋‚˜ ๋ฐœ์ƒํ• ๊นŒ?
Lemma 37.8์€ ๊ทธ ๊ฒฝ์šฐ๊ฐ€ ์ •ํ™•ํžˆ $\lvert H \cap K \rvert$ ๋งŒํผ ๋ฐœ์ƒํ•œ๋‹ค๊ณ  ๋งํ•œ๋‹ค.


proof.

Let $h_1, h_2 \in H$, $k_1, k_2 \in K$.

๋งŒ์•ฝ $h_1k_1 = h_2k_2$๋ผ๋ฉด,

$\iff h_2^{-1}h_1 = k_2k_1^{-1}$๊ฐ€ ๋  ๊ฒƒ์ด๊ณ  ์ด๊ฒƒ์€ $H \cap K$์— ์†ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค!


Let $h_2^{-1}h_1 = k_2k_1^{-1} = x \in H \cap K$.

Then, $h_2 = h_1x^{-1}$, $k_2 = x k_1$ for some $x \in H \cap K$๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค.


๊ทธ๋ฆฌ๊ณ  $y \in H \cap K$์— ๋Œ€ํ•ด์„œ๋„ $h_3$, $k_3$๋ฅผ $h_3 = h_1 y^{-1}$, $k_3 = y k_1$๋กœ ์žก์œผ๋ฉด,

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $h_3k_3 = h_1k_1$์ผ ๊ฒƒ์ด๋‹ค.

๋”ฐ๋ผ์„œ $HK$์˜ ๊ฐ ์›์†Œ $hk \in HK$๋Š” $H \cap K$์˜ ์›์†Œ ๊ฐฏ์ˆ˜๋งŒํผ $hk = h_ik_i$์ธ $h_ik_i$๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค.

์ฆ‰, $HK$๊ฐ€ $\lvert H \cap K \rvert$ ๋งŒํผ์˜ ๋ฌถ์Œ์œผ๋กœ ๋ถ„ํ• ๋œ๋‹ค๋Š” ๋ง์ด๋‹ค.


์ž˜ ๋น„ํ‹€์–ด ์ƒ๊ฐํ•˜๋ฉด, $H \times K$๋ฅผ $H \cap K$์˜ coset์œผ๋กœ ๋ถ„ํ• ํ•œ๋‹ค๋Š” ๋ง๊ณผ ๊ฐ™๋‹ค.

๋”ฐ๋ผ์„œ ์ •๋ฆฌํ•˜๋ฉด,

\[\lvert HK \rvert = \dfrac{\lvert H \rvert \times \lvert K \rvert}{\lvert H \cap K \rvert}\]

$\blacksquare$



์ด์ œ ๊ต์žฌ์— ์žˆ๋Š” Sylow Theorem๊ณผ ๊ด€๋ จ๋œ Lemma๋‚˜ Theorem์€ ๋ชจ๋‘ ์‚ดํŽด๋ณธ ์…ˆ์ด๋‹ค.

์ด Sylow Theorem์„ ์ œ๋Œ€๋กœ ํ™œ์šฉํ•˜๋Š” ๋ฌธ์ œ๋“ค์„ ๋˜ ์‚ดํŽด๋ณด์ž!!



Sylow Theorem - Examples

Type-1

Example 1.

Let $\lvert G \rvert = p^n$ ($n > 1$, $p$ is prime).

Then, $G$ is not simple.

By 1st Sylow thm,

there exists a $p$-subgroup $H$ where $\lvert H \rvert = p^{n-1}$.

์ด $p$-subgroup $H$๋Š” $G$์— ๋Œ€ํ•ด normal subgroup์ด๋‹ค.

๋”ฐ๋ผ์„œ $\lvert G \rvert = p^n$์ธ group $G$๋Š” simple group์ด ์•„๋‹ˆ๋‹ค! $\blacksquare$

์œ„ ๊ฒฐ๊ณผ์— ์˜ํ•ด ์œ„์ˆ˜๊ฐ€ 16์ธ ๊ตฐ์€ ์œ„์ˆ˜๊ฐ€ 8์ธ normal subgroup์„ ๊ฐ€์ง€๋ฏ€๋กœ simple group์ด ์•„๋‹ˆ๋‹ค!



Example 2.

Let $\lvert G \rvert = 15$.

Then, $G$ is cyclic.

$15 = 3 \times 5$์ด๋‹ค.

  • ์œ„์ˆ˜๊ฐ€ ๋‘ ์†Œ์ˆ˜ $3$, $5$์˜ ๊ณฑ์œผ๋กœ ํ‘œํ˜„
  • $5 \not\equiv 1$ (mod $3$)

์ด๋ฏ€๋กœ

์œ„์—์„œ ์ฆ๋ช…ํ•œ Theorem 37.7์˜ ๋‘๋ฒˆ์งธ ๋ช…์ œ์— ์˜ํ•ด

$G$๋Š” cyclic group์ด๋‹ค. $\blacksquare$



Example 3.

Let $\lvert G \rvert = 20$.

Then, $G$ is not simple.

$\lvert G \rvert = 20 = 2^2 \times 5$

์•„๋ž˜์™€ ๊ฐ™์ด (# of Sylow $p$-subgroup)๋“ค์„ ์ •์˜ํ•˜์ž.

  • $n$ := (# of Sylow 2-subgroup)
  • $m$ := (# of Sylow 5-subgroup)

๊ทธ๋Ÿฌ๋ฉด, 3rd Sylow Theorem์— ์˜ํ•ด

  • $n \mid 20$, and $n \equiv 1$ (mod 2) $\implies$ $2k + 1 \mid 20$
  • $m \mid 20$, and $m \equiv 1$ (mod 5) $\implies$ $5l + 1 \mid 20$


Claim: either $n$ or $m$ is 1

๋จผ์ € $m$์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด์ž.

$5l + 1 \mid 20$์ด๋ฏ€๋กœ $5l + 1$๋Š” 1, 2, 4, 5, 10, 20์ด ๊ฐ€๋Šฅํ•˜๋‹ค.
์ด๋•Œ, $5l + 1$์ด๋ฏ€๋กœ $5l + 1 = 1$์ด ๋˜์–ด์•ผ ํ•œ๋‹ค.

๋”ฐ๋ผ์„œ, $m$ = (# of Sylow 5-subgroup) = 1์ด๋ฏ€๋กœ Sylow 5-subgroup์€ normal subgroup์ด๋‹ค.

๋”ฐ๋ผ์„œ $G$๋Š” not simple group์ด๋‹ค. $\blacksquare$



Type-2

์ด ๋ฌธ์ œ๋ถ€ํ„ฐ๋Š” ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ not simple์„ ํŒ๋ณ„ํ•œ๋‹ค!!


Example 5.

Let $\lvert G \rvert = 48$.

Then, $G$ is not simple.

$\lvert G \rvert = 48 = 2^4 \times 3$

$n$ := (# of Sylow 2-subgroup)๋ผ๊ณ  ์ •์˜ํ•˜์ž,
๊ทธ๋Ÿฌ๋ฉด 3rd Sylow Theorem์— ์˜ํ•ด $n$ = 1 or 3 ์ด๋‹ค.


$n = 3$์ธ ๊ฒฝ์šฐ๋ฅผ ๊ฐ€์ •ํ•ด๋ณด์ž.

$G$์—์„œ $H \ne K$์ธ ๋‘ Sylow 2-subgroup์„ ์ƒ๊ฐํ•ด๋ณด์ž.
๋˜, $H$, $K$๊ฐ€ Sylow 2-subgroup์ด๋ฏ€๋กœ $\lvert H \rvert = \lvert K \rvert = 2^4$์ด๋‹ค.


์•ž์—์„œ ์ฆ๋ช…ํ•œ Lemma 37.8์„ ์ด์šฉํ•ด $\lvert H \cap K \rvert = 8$์ž„์„ ๋ณด์ผ ๊ฒƒ์ด๋‹ค.

$HK$์˜ ์œ„์ˆ˜๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

Lemma 37.8์— ์˜ํ•ด ์•„๋ž˜์˜ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\lvert HK \rvert = \dfrac{\lvert H \rvert \times \lvert K \rvert}{\lvert H \cap K \rvert}\]

์ด๋•Œ, ๋ถ„๋ชจ์˜ $H \cap K$๋Š” subgroup๋“ค์˜ intersection์ด๋ฏ€๋กœ ๋‹น์—ฐํžˆ $G$์˜ subgroup์ด ๋˜๋ฉฐ,
Lagrange Thm์— ์˜ํ•ด $16 = \lvert H \rvert$์˜ ์•ฝ์ˆ˜๊ฐ€ ๋œ๋‹ค.

๋งŒ์•ฝ $\lvert H \cap K \rvert = 4$๋ผ๋ฉด, $\lvert HK \rvert = \dfrac{16 \times 16}{4} = 64$๊ฐ€ ๋˜๋ฏ€๋กœ
$HK \subseteq G$์— ์œ„๋ฐฐ๋œ๋‹ค. ๋”ฐ๋ผ์„œ $\lvert H \cap K \rvert \ne 4$.


๋งŒ์•ฝ $\lvert H \cap K \rvert = 8$๋ผ๋ฉด, $\lvert HK \rvert = 32 < \lvert G \rvert$๊ฐ€ ๋œ๋‹ค.

์ด๋•Œ, $\lvert H \cap K \rvert = 8$๋ผ๋Š” ๊ฒƒ์€ $H \cap K$์˜ $H$, $K$์— ๋Œ€ํ•œ index๊ฐ€ 2๊ฐ€ ๋จ์„ ๋งํ•œ๋‹ค.

๋”ฐ๋ผ์„œ $H \cap K \trianglelefteq H, K$์ด๋‹ค.


์ด๋ฒˆ์—” $H \cap K$์˜ Normalizer $N_G(H \cap K)$๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

$N_G(H \cap K)$๋Š” $H$์™€ $K$๋ฅผ ๋ชจ๋‘ ํฌํ•จํ•ด์•ผ ํ•œ๋‹ค.
๋”ฐ๋ผ์„œ $\lvert N_G(H \cap K) \rvert > 16$์ด๋‹ค.

Normalizer๋Š” mother-group์— subgroup์ด ๋˜๋ฏ€๋กœ
$48 = \lvert G \rvert$์˜ ์•ฝ์ˆ˜๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค.

๊ฒŒ๋‹ค๊ฐ€ $N_G(H \cap K)$๋Š” $H$, $K$๋ฅผ ๋ชจ๋‘ ํฌํ•จํ•˜๋ฏ€๋กœ $HK$๋„ ํฌํ•จํ•ด์•ผ ํ•œ๋‹ค.
๋”ฐ๋ผ์„œ $\lvert N_G(H \cap K) \rvert > 32$

๋”ฐ๋ผ์„œ

\[16 < 32 < \lvert N_G(H \cap K) \rvert \mid 48\]

๊ฐ€ ๋œ๋‹ค.

์ด์— ๋”ฐ๋ผ $\lvert N_G(H \cap K) \rvert = 48$์ด ๋˜๋ฉฐ,
์ด๊ฒƒ์€ $N_G(H \cap K) = G$๋ฅผ ์˜๋ฏธํ•œ๋‹ค.

๋”ฐ๋ผ์„œ $H \cap K \trianglerighteq G$๊ฐ€ ๋œ๋‹ค.

$G$๋Š” ์œ„์ˆ˜๊ฐ€ 8์ธ normal subgroup์„ ๊ฐ€์ง€๋ฏ€๋กœ, simple group์ด ์•„๋‹ˆ๋‹ค! $\blacksquare$



Example 4.

Let $\lvert G \rvert = 30$.

Then, $G$ is not simple.



Example 6.

Let $\lvert G \rvert = 36$.

Then, $G$ is not simple.



Example 7.

Let $\lvert G \rvert = 255$.

Then, $G$ is abelian.