2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)



3๊ฐ€์ง€ Isomorphism Threorem์ด ์ˆœํ•œ ๋ง›์ด์—ˆ๋‹ค๋ฉด, 3๊ฐ€์ง€ Sylow Theorem์€ ๋งค์šด ๋ง›์ด๋‹ค ใ… ใ… 

๊ทธ๋‚˜๋งˆ ๋‹คํ–‰์ธ ์ ์€ Sylow Theorem์— ๋Œ€ํ•œ ์ฆ๋ช…์€ ํ•™๋ถ€ ์ˆ˜์ค€์„ ๋ฒ—์–ด๋‚˜์„œ ์ˆ˜์—… ๋•Œ ๊ต์ˆ˜๋‹˜์ด ์ฆ๋ช…ํ•˜์‹œ์ง„ ์•Š์•˜๋‹ค๋Š” ์ ์ด๋‹ค ใ… ใ… 

๊ทธ๋ž˜๋„ Application์€ ์—ฌ์ „ํžˆ ์–ด๋ ต๋‹ค ใ… ใ… 


Sylow Theorem๋“ค์€ ๋ชจ๋‘ ์œ ํ•œ๊ตฐ์„ ๋ถ„์„ํ•˜๋Š” ๋„๊ตฌ๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์†Œ์ˆ˜ $p$๋ฅผ ์•„์ฃผ ์ข‹์•„ํ•œ๋‹ค

Sylow Theorem์„ ์ด์šฉํ•˜๋ฉด ์œ ํ•œ๊ตฐ์—์„œ ์œ„์ˆ˜์— ๋Œ€ํ•œ ์ •๋ณด ๋งŒ์œผ๋กœ ์œ ํ•œ๊ตฐ์˜ ๊ตฌ์กฐ์™€ ๋ถ€๋ถ„๊ตฐ๋“ค์— ๋Œ€ํ•ด ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ๋‹ค!!

Lagrange Theorem์ด ํŠน์ • ์œ„์ˆ˜์˜ ๋ถ€๋ถ„๊ตฐ์ด ์—†์Œ์„ ๋ณด์ด๋Š” ๋ฐ์— ์œ ์šฉํ–ˆ๋‹ค๋ฉด,
(Converse of Lagrange ๋•Œ๋ฌธ์— Lagrange Thm์œผ๋กœ ํŠน์ • ์œ„์ˆ˜์˜ ๋ถ€๋ถ„๊ตฐ์ด ์žˆ์Œ์„ ๋ณด์ด๋Š” ๊ฑด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค.)

Sylow Theorem์€ ํŠน์ • ์œ„์ˆ˜์˜ ๋ถ€๋ถ„๊ตฐ์ด ์žˆ์Œ์„ ๋ณด์ด๋Š” ๋ฐ์— ์œ ์šฉํ•˜๋‹ค!!



$p$-group

Definition. $p$-group

Let $p$ be a prime number.

A group $G$ is called โ€œ$p$-groupโ€,

if every elts has a power of $p$ order

p.s. $p$-group์˜ subgroup๋„ ์—ฌ์ „ํžˆ $p$-group์ด๋‹ค!
(์ƒ๊ฐํ•ด๋ณด๋ฉด, $p$-group์˜ ์›์†Œ๋ฅผ ๋ชจ์•„ subgroup์„ ๋งŒ๋“ค์—ˆ์œผ๋‹ˆ ๋‹น์—ฐํ•˜๊ธด ํ•˜๋‹ค ใ…‹ใ…‹)



Theorem. (Cauchy)

Let $G$ be a finite group, and $p \mid \lvert G \rvert$.

Then, $G$ has an elt of order $p$.

์ˆ˜์—… ๋•Œ ์ฆ๋ช…์€ ์ƒ-๋žตํ•˜์…จ์Œ!


Corollary.

Let $G$ be a finite group,

$G$ is a $p$-group $\iff$ $\lvert G \rvert$ is a power of $p$


($\impliedby$) Let $\lvert G \rvert = p^n$.

For $a \in G$, $\lvert a \rvert \mid \lvert G \rvert$,

then $\lvert a \rvert = p^{k} \quad (0 \le k \le n)$.

This means $G$ is a $p$-group.

($\implies$) Supp. $G$ is $p$-group.

Then, $p$ is the only prime divisor of $\lvert G \rvert$.

If thereโ€™s additional prime divisor, $pโ€™ \ne p$,

then by Cauchy, $\exists$ an elt $a \in G$ s.t. $\lvert a \rvert = pโ€™$.

then this mean $G$ is not $p$-group.

Therefore, $p$ is the only prime divisor of $\lvert G \rvert$.

This means $\lvert G \rvert = p^n$.



Normalizer

Definition.

For $H \le G$, the normalizer of $H$ in $G$ is

\[N_G (H) := \{g \in G \mid gHg^{-1} = H\}\]

๋งŒ์•ฝ $N_G(H) = G$๋ผ๋ฉด, subgroup $H$๋Š” normal subgroup์ด ๋œ๋‹ค!


Normalizer $N_G(H)$์— ๋Œ€ํ•œ ์„ฑ์งˆ๋“ค์„ ์ข€๋” ์•Œ์•„๋ณด์ž.

Properties. Normalizer $N_G(H)$

1. $H \trianglelefteq N_G(H)$

normalizer ์ •์˜๊ฐ€ $H$๋ฅผ normalํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ์›์†Œ๋“ค์˜ ์ง‘ํ•ฉ์ด๋ฏ€๋กœ ๋‹น์—ฐํžˆ $H$๋Š” $N_G(H)$์— normal subgroup์ด๋‹ค.


2. $N_G(H) \le G$

$N_G(H)$๊ฐ€ subgroup์˜ ์ •์˜๋ฅผ ๋งŒ์กฑํ•˜๋Š”์ง€ ํ™•์ธํ•ด๋ณด๋ฉด ๋œ๋‹ค.



1st Sylow Theorem

Theorem. 1st Sylow Theorem

Let $\lvert G \rvert = p^n \cdot m$ where $n, m \in \mathbb{N}$ and $(m, p) = 1$.

Then,

1. $G$ contains subgroup of order $p^i \quad (0 \le i \le n)$.

  • $p^0 = e$ : trivial subgroup
  • $p^1$ : by Cauchy
  • $p^2, \cdots p^n$ : by 1st Sylow Thm


2. Every โ€œsubgroup of order $p^i \quad (i<n)$โ€ is a normal subgroup of a โ€œsubgroup of order $p^{i+1}$โ€.

์ฆ‰, $\lvert H \rvert = p^i$์ธ subgp $H$์— ๋Œ€ํ•ด $H \trianglelefteq Hโ€™$์ธ normal subgroup์ด $\lvert Hโ€™ \rvert = p^{i+1} = \lvert H \rvert \cdot p$๋ฅผ ๊ฐ–๊ณ  ์กด์žฌํ•จ์„ ๋ณด์žฅํ•œ๋‹ค.

์ฆ๋ช…์€ ํ•™๋ถ€ ๊ณผ์ •์„ ์ƒํšŒํ•˜๋ฏ€๋กœ ์ƒ-๋žต ํ•œ๋‹ค.



Sylow $p$-group

Definition. Sylow $p$-group

For $\lvert G \rvert < \infty$,

a โ€œSylow $p$-group $P$โ€ is a maximal $p$-subgroup of $G$.

์ฆ‰, $p$-subgroup์ธ๋ฐ ์ž๊ธฐ ์ž์‹ ์„ ํฌํ•จํ•˜๋Š” ๋” ํฐ $p$-subgroup์ด ์—†๋Š” $p$-subgroup์„ maximal subgroup์ด๋ผ๊ณ  ํ•˜๋ฉฐ, ์ด๊ฒƒ์„ โ€œSylow $p$-groupโ€์ด๋ผ๊ณ  ํ•œ๋‹ค.

maximal $p$-subgroup = Sylow $p$-group

โ€ป ์–ด๋–ค Group์ด๋“  Sylow $p$-subgroup์„ ๋ฐ˜๋“œ์‹œ ๊ฐ€์ง„๋‹ค!



2nd Sylow Theorem

Theorem. 2nd Sylow Theorem

Let $P_1$, $P_2$ be two Sylow $p$-subgroup of finite group $G$.

Then, $P_1$ and $P_2$ are conjugate of each other.

์ฆ‰,

\[P_1 = g{P_2}g^{-1} \quad (\textrm{for some} \; g \in G)\]



3rd Sylow Theorem

Theorem. 3rd Sylow Theorem

If a prime $p$ divides $\lvert G \rvert$; $p \mid \lvert G \rvert$,

then the (# of Sylow $p$-subgroup) is congruent to 1 (mod $p$)

and it divides $\lvert G \rvert$.




Sylow Theorem์— ๋Œ€ํ•œ Application์€ ์•„๋ž˜์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค!