β€œν™•λ₯ κ³Ό 톡계(MATH230)” μˆ˜μ—…μ—μ„œ 배운 것과 κ³΅λΆ€ν•œ 것을 μ •λ¦¬ν•œ ν¬μŠ€νŠΈμž…λ‹ˆλ‹€. 전체 ν¬μŠ€νŠΈλŠ” Probability and Statisticsμ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€ 🎲

2 minute read

β€œν™•λ₯ κ³Ό 톡계(MATH230)” μˆ˜μ—…μ—μ„œ 배운 것과 κ³΅λΆ€ν•œ 것을 μ •λ¦¬ν•œ ν¬μŠ€νŠΈμž…λ‹ˆλ‹€. 전체 ν¬μŠ€νŠΈλŠ” Probability and Statisticsμ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€ 🎲

Interval Estimation ν¬μŠ€νŠΈμ—μ„œ 닀룬 <Interval Estimation>을 νŠΉμ • 상황에 μ–΄λ–»κ²Œ μ μš©ν•  수 μžˆλŠ”μ§€λ₯Ό λ‹€λ£¨λŠ” ν¬μŠ€νŠΈμž…λ‹ˆλ‹€.

μ•„λž˜μ˜ 문제λ₯Ό μ‚΄νŽ΄λ³΄μž!

μš°λ¦¬λŠ” 학생1λΆ€ν„° 학생30κΉŒμ§€ κ·Έλ“€μ˜ TOEIC 점수의 before-afterλ₯Ό 가지고 μžˆλ‹€. μš°λ¦¬λŠ” κ³Όμ—° MATH230 μˆ˜μ—…μ΄ ν•™μƒλ“€μ˜ TOEIC μˆ˜μ—…μ— μ–΄λ–€ 영ν–₯을 λ―ΈμΉ˜λŠ”μ§€ μ•ŒκΈ° μœ„ν•΄ $\mu_1 - \mu_2$λ₯Ό μΆ”μ •ν•˜κ³ μž ν•œλ‹€!!

Q. Can we find a 95% confidence interval for the true mean of the differences btw the scores before and after the MATH230?

Supp. $X_1, \dots, X_n$ and $Y_1, \dots, Y_n$ are random samples and $\sigma_1^2$ and $\sigma_2^2$ are known.

이전 포슀트 β€œTwo Samples Estimation: Diff Btw Two Meansβ€œμ—μ„œ λ§Œμ•½ 두 μƒ˜ν”Œμ˜ 뢄산을 μ •ν™•νžˆ μ•ˆλ‹€λ©΄, μ•„λž˜μ™€ 같이 ꡬ간을 μΆ”μ •ν•  수 μžˆλ‹€κ³  ν•˜μ˜€λ‹€.

\[\left| \bar{x} - \bar{y} \right| \le z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}}\]

πŸ’₯ ν•˜!지!만! μœ„μ˜ 방법은 μ˜¬λ°”λ₯Έ 접근이 μ•„λ‹ˆλ‹€! μ™œλƒν•˜λ©΄, ν˜„μž¬ μš°λ¦¬κ°€ 가진 μƒ˜ν”Œ $X_i$, $Y_i$에 λŒ€ν•΄ κ·Έ λ‘˜μ΄ μ„œλ‘œ dependent ν•˜κΈ° λ•Œλ¬Έμ΄λ‹€!! μœ„μ˜ 접근은 $X_i$와 $Y_i$κ°€ independent ν•  λ•Œλ§Œ κ°€λŠ₯ν•˜λ‹€!!

κ·Έλž˜μ„œ μš°λ¦¬λŠ” 각 $X_i$, $Y_i$λ₯Ό κ°œλ³„μ μœΌλ‘œ μƒκ°ν•˜λŠ” 것이 μ•„λ‹ˆλΌ 그듀을 paringν•œ Difference $D_i = X_i - Y_i$둜 μ ‘κ·Όν•˜κ³ μž ν•œλ‹€!

μ΄λ ‡κ²Œ ν•  경우, 각 PairλŠ” μ„œλ‘œ independentν•˜κ²Œ λœλ‹€!

Assume that $D_1, \dots, D_n$ are normal random samples: $D_i \sim N(\mu_D, \sigma_D^2)$

To find the confidence interval for $\mu_1 - \mu_2$, we use $\bar{D} := \bar{X} - \bar{Y}$.

Then, by CLT

\[\frac{\bar{D} - \mu_D}{\sigma_D / \sqrt{n}} \; \sim \; N(0, 1)\]

μ΄λ•Œ, μš°λ¦¬λŠ” $\sigma_D^2$λ₯Ό μ•Œμ§€ λͺ»ν•˜λ―€λ‘œ 이것을 sample variance $s_D^2$으둜 κ΅μ²΄ν•˜λ©΄ λΆ„ν¬λŠ” μ•„λž˜μ™€ κ°™λ‹€.

\[\frac{\bar{D} - \mu_D}{s_D / \sqrt{n}} \; \sim \; t(n-1)\]

μ§€κΈˆκΉŒμ§€λŠ” <Normal Distribution>μ—μ„œ 뽑은 random sampleμ—μ„œ μΆ”μ •(Estimation)을 μ§„ν–‰ν–ˆλ‹€. λ‹€μŒ ν¬μŠ€νŠΈμ—μ„œλŠ” <Bernoulli Distribution>μ—μ„œ μˆ˜ν–‰ν•˜λŠ” 좔정인 <Proportion Estimation>에 λŒ€ν•΄ μ‚΄νŽ΄λ³Έλ‹€!! (Binomial Distributionμ—μ„œμ˜ 평균은 Proportion이닀!! 😁)

πŸ‘‰ Proportion Estimation on Bernoullid Distribution