์„ ์ ๋ถ„๊ณผ ์ด์ค‘์ ๋ถ„์„ ์—ฐ๊ฒฐํ•˜๋Š” ์ •๋ฆฌ. ์ด์ค‘ ์ ๋ถ„์œผ๋กœ ์„ ์ ๋ถ„์„ ๊ณ„์‚ฐํ•  ์ˆ˜๋„ ์žˆ๊ณ , ๋ฐ˜๋Œ€๋กœ ์„ ์ ๋ถ„์œผ๋กœ ์ด์ค‘ ์ ๋ถ„์„ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ๋„ ๊ฐ€๋Šฅ. ๋„๋„› ๋ชจ์–‘์˜ ์˜์—ญ์„ ์„ ์ ๋ถ„ํ•˜๊ฑฐ๋‚˜ ์ด์ค‘ ์ ๋ถ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๐Ÿฉ

10 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฏธ์ ๋ถ„ํ•™ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

๋ฏธ์ 2์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ฑ•ํ„ฐ๊ฐ€ ์–ด๋””๋ƒ๊ณ  ๋ฌผ์œผ๋ฉด ๋ฐ”๋กœ โ€œ๊ทธ๋ฆฐ ์ •๋ฆฌโ€์™€ โ€œ์Šคํ† ์Šคํฌ ์ •๋ฆฌโ€๋‹ค. ์‚ฌ์‹ค์ƒ ์ง€๊ธˆ๊นŒ์ง€ ๋ฐฐ์šด ๋ฏธ์ 1๊ณผ ๋ฏธ์ 2์˜ ๋‚ด์šฉ์€ ๋ชจ๋‘ ์ด ์ •๋ฆฌ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•œ ๋นŒ๋“œ์—…์— ๋ถˆ๊ณผํ–ˆ๋‹จ ๊ฒƒโ€ฆ ใ…‹ใ…‹ ๊ทธ๋งŒํผ ์ด ๋ถ€๋ถ„์ด ์ค‘์š”ํ•˜๊ณ , ์ด๊ฑธ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ๊ทธ ๋งŽ์€ ๋‚ด์šฉ๋“ค์„ ๊ณต๋ถ€ํ•œ ๊ฑฐ๋ผ๋Š” ์‚ฌ์‹ค. ์—ฌ๊ธฐ๊นŒ์ง€ ์ดํ•ดํ•˜๊ธฐ๋ฅผ ํฌ๊ธฐํ•˜์ง€ ์•Š๊ณ  ์˜จ๊ฒŒ ๋ฟŒ๋“ฏํ•˜๊ธฐ๋„ ํ•˜๋‹คโ€ฆ ๐Ÿฅบ ์•”ํŠผ ์ค‘์š”ํ•œ ๋‚ด์šฉ์ด๊ธฐ ์ •์‹  ๋ฐ”์ง ์ฐจ๋ฆฌ๊ณ  ๋ณธ๋ก ์œผ๋กœ ใ„ฑใ„ฑ!

Green Theorem

๊ทธ๋ฆฐ ์ •๋ฆฌ๋ฅผ ํ•œ๋งˆ๋””๋กœ ์š”์•ฝํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

์–ด๋–ค ํŠน๋ณ„ํ•œ ๋ฒกํ„ฐ ํ•จ์ˆ˜์— ๋ฒกํ„ฐ ์„ ์ ๋ถ„๊ณผ ์ด์ค‘์ ๋ถ„์„ ์—ฐ๊ฒฐํ•˜๋Š” ์ •๋ฆฌ.

์ข€๋” ์ •ํ™•ํžˆ ์ •์˜ํ•˜๋ฉด, ์•„๋ž˜ ๋‘ ์ ๋ถ„์„ ์—ฐ๊ฒฐํ•˜๋Š” ์ก๋ฆฌ๋‹ค.

  • simple closed curve $C$ ์œ„์—์„œ ์ •์˜ํ•œ ๋ฒกํ„ฐ ์„ ์ ๋ถ„
  • ๋™์ผํ•œ curve $C$๋กœ ์ •์˜ํ•œ ์˜์—ญ $D$ ์œ„์—์„œ ์ •์˜ํ•œ ์ด์ค‘์ ๋ถ„

์ •๋ฆฌ์˜ ๋ช…์ œ ํ˜•ํƒœ๋กœ๋„ ์‚ดํŽด๋ณด์ž.

Let $C$ be a positively oriented, piecewise-smooth, simple closed curve in the plane.

Let $D$ be the region bounded by $C$.

If $P$ and $Q$ have continuous partial derivatives on an open region that contains $D$, then

\[\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C P \, dx + Q \, dy = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, dA\]

Curve Orientation

๊ทธ๋ฆฐ ์ •๋ฆฌ๋ฅผ ๊ธฐ์ˆ ํ•œ ์œ„์˜ ๋ช…์ œ์—์„œ โ€œpositively orientedโ€๋ผ๋Š” ํ‘œํ˜„์ด ๋“ฑ์žฅํ•œ๋‹ค. ์ˆ˜ํ•™์—์„œ๋Š” Curve์˜ ๋ฐฉํ–ฅ์„ positive, negative๋กœ ์ •์˜ํ•˜๋Š”๋ฐ CCW ๋ฐฉํ–ฅ์„ positive orientation์œผ๋กœ ์„ค์ •ํ•œ๋‹ค.

CLP Calculus Textbook

positive orientation์„ CCW๋กœ ์„ค์ •ํ•˜๊ณ , TNB ์ขŒํ‘œ๋ฅผ ์žก์œผ๋ฉด, ๋ฒ•์„  ๋ฒกํ„ฐ $\mathbf{N}$์ด ํ•ญ์ƒ ์ปค๋ธŒ ์•ˆ์ชฝ์œผ๋กœ ํ–ฅํ•˜๊ฒŒ ๋œ๋‹ค.

CLP Calculus Textbook

์š”๋ ‡๊ฒŒ ๋ง์ด๋‹ค!!

Curve Boundary

๋˜, ์ˆ˜ํ•™์  ํ‘œ๊ธฐ๋กœ ์˜์—ญ $D$๋ฅผ ๊ฐ์‹ธํ•˜๋Š” positive oriented curve๋ฅผ ํŽธ๋ฏธ๋ถ„ ๊ธฐํ˜ธ๋ฅผ ์‚ฌ์šฉํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ํ‘œํ˜„ํ•œ๋‹ค.

\[\partial D\]

์œ„์˜ ํ‘œ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•ด ๊ทธ๋ฆฐ ์ •๋ฆฌ๋ฅผ ๋‹ค์‹œ ์ •์˜ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, dA = \int_{\partial D} P \, dx + Q \, dy\]

Application of Green Theorem

๊ทธ๋ฆฐ ์ •๋ฆฌ๋Š” ๊ฒฝ๊ณ„ ์œ„์—์„œ์˜ ๋ฒกํ„ฐ ์„ ์ ๋ถ„๊ณผ ๊ฒฝ๊ณ„๋กœ ๋งŒ๋“ค์–ด์ง€๋Š” ์˜์—ญ์˜ ์ด์ค‘์ ๋ถ„์„ ์—ฐ๊ฒฐํ•˜๋Š” ์ •๋ฆฌ์˜€๋‹ค. ์ด๋ฅผ ํ™œ์šฉํ•ด

  • ๋ฒกํ„ฐ ์„ ์ ๋ถ„์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ์ด์ค‘ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.
  • ๋ฐ˜๋Œ€๋กœ ์ด์ค‘ ์ ๋ถ„์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฒกํ„ฐ ์„ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

์ด์ค‘ ์ ๋ถ„์„ ๋ฒกํ„ฐ ์„ ์ ๋ถ„์œผ๋กœ ๊ณ„์‚ฐ

Find the area enclosed by the ellipse

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]

ํƒ€์›์˜ ๋„“์ด๋ฅผ ๊ตฌํ•˜๋Š” ๋ฌธ์ œ๋‹ค. ์ด๋ฅผ ์ด์ค‘ ์ ๋ถ„์œผ๋กœ ์ •์˜ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\iint_D 1 \, dA\]

์ด๋ฅผ ๊ทธ๋ฆฐ ์ •๋ฆฌ์˜ ๊ด€์ ์—์„œ ๋ณด๋ฉด, $P$, $Q$๊ฐ€ ์•„๋ž˜ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ์ด์ค‘ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™๋‹ค.

\[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1\]

์œ„์˜ ๊ฒฝ์šฐ๋ฅผ ๋งŒ์กฑํ•˜๋Š” $P$, $Q$๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๊ฒฝ์šฐ๊ฐ€ ํ•˜๋‹ค.

  1. $P(x, y) = 0, \, Q(x, y) = x$
  2. $P(x, y) = -y, \, Q(x, y) = 0$
  3. $P(x, y) = - y / 2, \, Q(x, y) = x / 2$

๋”ฐ๋ผ์„œ, ์•„๋ž˜์˜ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[A = \oint_C x \, dy = \oint_C (- y) \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx\]

์œ„์˜ 3๊ฐ€์ง€ ๋ฐฉ์‹์€ ์–ด๋–ค ๊ฑธ ์„ ํƒํ•ด๋„ ์ƒ๊ด€ ์—†๋‹ค ใ…Žใ…Ž (์ง์ ‘ ํ•ด๋ด„) ์ œ์ผ ์‰ฌ์šธ ๊ฒƒ ๊ฐ™์€, (1)๋ฒˆ ๋ฐฉ์‹์œผ๋กœ ํ’€์ดํ•ด๋ณด์ž.

๋งค๊ฐœํ™”์— ์˜ํ•ด $x = a \cos t$, $y = b \sin t$์ด๋‹ค. ์ ๋ถ„์„ ์น˜ํ™˜ํ•˜๋ฉด,

\[\begin{aligned} A &= \oint_C x \, dy \\ &= \int_{0}^{2\pi} (a \cos t) (b \cos t) \, dt \\ &= ab \int_{0}^{2\pi} \cos^2 t \, dt \\ &= ab \int_{0}^{2\pi} \frac{\cos 2t + 1}{2} \, dt \\ &= ab \frac{2\pi}{2} = ab \pi \end{aligned}\]

Not simply-connected ์˜์—ญ์—์„œ์˜ ์ ๋ถ„

๊ทธ๋ฆฐ ์ •๋ฆฌ์˜ ๋ช…์ œ๋ฅผ ์ž˜ ์‚ดํŽด๋ณด๋ฉด, ๊ณก์„  $C$์— ๋Œ€ํ•œ ์กฐ๊ฑด์ด ์•„๋ž˜์™€ ๊ฐ™์ด ์ ํ˜€์žˆ๋‹ค.

positively oriented, piecewise-smooth, simple closed curve

์ฆ‰, ๊ณก์„ ์ด simply-connected์ธ ํ•„์š”๋Š” ์—†๋‹ค!!

CLP Calculus Textbook

๊ณก์„ ์ด ์š”๋ ‡๊ฒŒ โ€œ๋„๋„› ๋ชจ์–‘โ€œ์„ ์ด๋ฃจ๋”๋ผ๋„ ๊ทธ๋ฆฐ ์ •๋ฆฌ๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค!! ์—ฐ์Šต๋ฌธ์ œ๋ฅผ ํ†ตํ•ด ๋„๋„› ํ˜•ํƒœ์˜ ์˜์—ญ์„ ์–ด๋–ป๊ฒŒ ์ ๋ถ„ํ•  ์ˆ˜ ์žˆ์„์ง€ ์‚ดํŽด๋ณด์ž.

(Problem from CLP Calculus Textbook.)

Evaluate

\[\oint_C \mathbf{F} \cdot d\mathbf{r}\]

where

\[\mathbf{F} = \frac{-y \, \mathbf{i} + x \, \mathbf{j}}{x^2 + y^2}\]

and curve $C$ is an unit circle

\[\begin{aligned} x(t) &= \cos t \\ y(t) &= \sin t \end{aligned}\]

[์ž˜๋ชป๋œ ํ’€์ด] ๋จผ์ € ๊ทธ๋ฆฐ ์ •๋ฆฌ๋ฅผ ์ž˜๋ชป ์‚ฌ์šฉํ•˜๋Š” ์‚ฌ๋ก€๋ถ€ํ„ฐ ์‚ดํŽด๋ณด์ž. ๊ทธ๋ฆฐ ์ •๋ฆฌ์— ๋”ฐ๋ผ ๋ฒกํ„ฐ ์„ ์ ๋ถ„์„ ์ด์ค‘ ์ ๋ถ„์œผ๋กœ ๋ณ€ํ™˜ํ•˜์ž.

\[\begin{aligned} \oint_C \mathbf{F} \cdot d\mathbf{r} &= \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA \\ &= \iint_D \left( \frac{-x^2 + y^2}{(x^2 + y^2)^2} - \frac{(-x^2 + y^2)}{(x^2 + y^2)^2}\right) dA = 0 \end{aligned}\]

์ฆ‰, ์ด์ค‘ ์ ๋ถ„์˜ ๊ฐ’์ด 0์ด๋ฏ€๋กœ, ๋ฒกํ„ฐ ์„ ์ ๋ถ„์˜ ๊ฐ’๋„ 0์ด๋‹คโ€ฆ?! ์ด ํ’€์ด๋Š” ์ž˜๋ชป๋˜์—ˆ๋‹ค. ๊ทธ ์ด์œ ๋Š” ์ด์ค‘ ์ ๋ถ„์—์„œ ์ ๋ถ„ ์˜์—ญ $D$ ๋‚ด๋ถ€์— ์žˆ๋Š” ์›์  $O$์—์„œ ํ•จ์ˆ˜ $\mathbf{F}(x, y)$๊ฐ€ ์ •์˜๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€ ์ด์œ ๋กœ ์›์  $O$์—์„œ 1์ฐจ ํŽธ๋ฏธ๋ถ„ $\partial P$, $\partial Q$๋„ ์ •์˜๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ๊ทธ๋ฆฐ ์ •๋ฆฌ๋ฅผ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ „์ œ ์กฐ๊ฑด์„ ์œ„๋ฐ˜ํ•œ๋‹ค.

[์˜ฌ๋ฐ”๋ฅธ ํ’€์ด] ์ด๋Ÿฐ ๊ฒฝ์šฐ, ์ ๋ถ„์„ ๊ณ„์‚ฐํ•˜๋ผ๋ฉด โ€˜์ •์งํ•˜๊ฒŒโ€™ ๋ฒกํ„ฐ ์„ ์ ๋ถ„ ๊ฐ’์„ ๊ณ„์‚ฐํ•˜๋Š” ์ˆ˜ ๋ฐ–์— ์—†๋‹ค^^

\[\begin{aligned} \oint_C \mathbf{F} \cdot d\mathbf{r} &= \oint_C P \, dx + Q \, dy \\ &= \int_{0}^{2\pi} \left((- \sin t \cdot - \sin t) + (\cos t \cdot \cos t)\right) \, dt \\ &= \int_{0}^{2\pi} 1 \, dt = 2 \pi \end{aligned}\]

๋”ฐ๋ผ์„œ ์œ„์˜ ์„ ์ ๋ถ„ ๊ฐ’์€ $2\pi$์ด๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, ์ด๋ฒˆ์—๋Š” ์•„๋ž˜์˜ ๋ฌธ์ œ๋ฅผ ๋˜ ํ’€์–ด๋ณด์ž.


With same vector function, show that $\oint_C \mathbf{F} \cdot d\mathbf{r} = 2\pi$ for every positively oriented simple closed curve that encloses the origin $O$.

์ด๋ฒˆ์—๋Š” ์›์ ์„ ํฌํ•จํ•˜๋Š” โ€œ๋ชจ๋“ โ€ ๋‹ซํžŒ ์ปค๋ธŒ์—์„œ ์„ ์ ๋ถ„ ๊ฐ’์ด $2\pi$์ž„์„ ๋ณด์—ฌ์•ผ ํ•œ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ’€๊ธฐ ์œ„ํ•ด์„  ์•„๋ž˜์™€ ๋„๋„› ๋ชจ์–‘์˜ ์˜์—ญ์„ ์ƒ์ƒํ•ด์•ผ ํ•œ๋‹ค.

CLP Calculus Textbook

$-C_a$๋Š” ์›์ ์„ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๋Š” unit circle์ด๋‹ค.

์ด์ „๊ณผ ๋‹ฌ๋ฆฌ ์š”๋Ÿฐ ์˜์—ญ์—์„œ๋Š” ์ ๋ถ„์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์›์ ์ด ํฌํ•จ๋˜์–ด ์žˆ์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— $\mathbf{F}$์™€ $\partial P$, $\partial Q$๊ฐ€ ์ •์˜๋˜๊ธฐ ๋•Œ๋ฌธ ใ…Žใ…Ž ๊ทธ๋ฆฌ๊ณ  ์ด์— ๋Œ€ํ•œ ์ ๋ถ„์‹์˜ ๊ฐ’์€ $0$์ด๋ž€๊ฑด ์ด๋ฏธ ํ™•์ธํ•˜์˜€๋‹ค.

\[\iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = 0\]

๊ทธ๋ฆฐ ์ •๋ฆฌ์˜ ํ‘œ๊ธฐ์— ๋”ฐ๋ผ ์ ๋ถ„ ์˜์—ญ $D$์˜ ๊ฒฝ๊ณ„์— ๋Œ€ํ•œ ์„ ์ ๋ถ„์œผ๋กœ ์ด์ค‘ ์ ๋ถ„์„ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ๋‹ค. ์ด๋•Œ, ๊ฒฝ๊ณ„ $\partial D$๋Š” CCW์˜ ์ปค๋ธŒ $C$์™€ CW ๋ฐฉํ–ฅ์˜ $-C_a$๋กœ ๊ตฌ์„ฑ๋œ๋‹ค.

\[\partial D = C + (-C_a)\]

์ด์ œ ์œ„์˜ ์ด์ค‘ ์ ๋ถ„ ๊ฒฐ๊ณผ๋ฅผ ์„ ์ ๋ถ„์œผ๋กœ ๋ฐ”๊ฟ”์„œ ๊ธฐ์ˆ ํ•˜๋ฉด,

\[\iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \oint_C \mathbf{F} \cdot d\mathbf{r} + \oint_{-C_a} \mathbf{F} \cdot d\mathbf{r} = 0\]

์„ ์ ๋ถ„์— ๋Œ€ํ•œ ์ ๋ถ„๋งŒ ๋”ฐ๋กœ ๋–ผ์–ด์„œ ๋ณด๋ฉด,

\[\begin{aligned} \oint_C \mathbf{F} \cdot d\mathbf{r} + \oint_{-C_a} \mathbf{F} \cdot d\mathbf{r} &= 0 \\ \oint_C \mathbf{F} \cdot d\mathbf{r} - \oint_{C_a} \mathbf{F} \cdot d\mathbf{r} &= 0 \\ \oint_C \mathbf{F} \cdot d\mathbf{r} &= \oint_{C_a} \mathbf{F} \cdot d\mathbf{r} = 2\pi \end{aligned}\]

์ฆ‰, ์–ด๋–ค ๋‹ซํžŒ ๊ณก์„ ์— ๋Œ€ํ•œ ์„ ์ ๋ถ„๋„ ๋ชจ๋‘ unit circle ์œ„์—์„œ์˜ ์„ ์ ๋ถ„ ๊ฐ’๊ณผ ๋™์ผํ•œ $2\pi$๊ฐ€ ๋œ๋‹ค. $\blacksquare$

Partition a Region

์œ„์˜ ๊ฒฝ์šฐ๋Š” ๋„๋„› ๋ชจ์–‘ ์˜์—ญ์— ๋Œ€ํ•œ ์„ ์ ๋ถ„์„ ์ด์ค‘์ ๋ถ„์œผ๋กœ ๋ฐ”๊ฟ”์„œ ํ•ด๊ฒฐํ•œ ๊ฒฝ์šฐ์ด๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, ๋„๋„› ๋ชจ์–‘ ์ ๋ถ„์€ ์•„๋ž˜์™€ ๊ฐ™์ด 2๊ฐœ์˜ ์ปค๋ธŒ๋กœ ๋ถ„ํ• ํ•˜์—ฌ ์„ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜๋„ ์žˆ๋‹ค.

CLP Calculus Textbook

์š”๋ ‡๊ฒŒ ๋„๋„› ์˜์—ญ์„ ์œ„ยท์•„๋ž˜๋กœ ๋ถ„ํ• ํ•˜์—ฌ 2๊ฐœ์˜ ์ปค๋ธŒ๋กœ ๋ฐ”๊พธ์–ด ์„ ์ ๋ถ„ ํ•˜๋Š” ๊ฒƒ๋„ ๊ฐ€๋Šฅํ•˜๋‹ค.

๋งบ์Œ๋ง

๋ญ”๊ฐ€ ์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก (MATH210) ์ˆ˜์—…์—์„œ ์ด๋Ÿฐ ์ ๋ถ„์„ ๋งŽ์ด ํ–ˆ๋˜ ๊ธฐ์–ต์ด ์žˆ๋‹ค. ๊ทธ๋•Œ๋„ ๋‹ซํžŒ ์˜์—ญ์— ๋Œ€ํ•ด์„œ ์ปค๋ธŒ์˜ ๋ชจ์–‘์— ์ƒ๊ด€ ์—†์ด ์ ๋ถ„๊ฐ’์ด ๊ฐ™์€ ๊ทธ๋Ÿฐ ์ ๋ถ„๋“ค์„ ๋งŽ์ด ๋งŒ๋‚ฌ๋˜ ๊ธฐ์–ต์ด ๋‚œ๋‹ค. ๋ฏธ์ 2 ๋“ค์„ ๋•Œ, ์—ด์‹ฌํžˆ ๋“ค์—ˆ์œผ๋ฉด ์‘๋ณตํ•จ์ด ์ข€๋” ์‰ฌ์› ์œผ๋ ค๋ƒ ใ… ใ… 

Categories:

Updated: