Applied Complex Variables
응용복소함수론(MATH210)
Part I - Complex Functions
- Complex Variable - Basic
- Triangle inequality
- Euler’s formula
- de Moivre’s formula
- $n$-th root of $z$
- Interior / Exteriror / Boundary
- Complex Analysis - Basic
- Complex Functions
- Complex Limit
- Complex Continuity
- Complex Derivative
- Analytic Functions
Cauchy-Riemann Equation
$f(z) = u(x, y) + i v(x, y)$ is analytic in a domain $D$
iff the first partial derivatives of $u$ and $v$ satisfy
IF $f(z) = u(x, y) + i u(x, y)$ is analytic in a domain $D$, THEN both $u$ and $v$ are harmonic functions.
Laplace’s Equations and Harmonic functions
A real valued function $H(x, y)$ is harmonic in a domain $D$, IF it satisfies Laplace equations:
\[H_{xx} + H_{yy} = 0\]- Cauchy-Riemann Equation
- Laplace’s Equation & Harmonic functions
- harmonic conjugate
- Elementary Complex Functions
- Exponential Functions; $\exp z$
- Trigonometric Functions; $\cos z$, $\sin z$, $\tan z$
- Hyperbolic Functions; $\cosh z$, $\sinh z$
- Logarithm; $\log z$
- Power Functions; $z^c$
Part II - Contour Integrals
Cauchy-Goursat Theorem
Let $f(z)$ be an analytic function in a domain $D$. THEN,
\[\oint_{C} f(z) dz = 0\]for any simple closed curve $C$ whose interior is contained in $D$.
- Contour Integrals
- parametric curves
- Length of Curve; $\lvert C \rvert$
- Complex Integrations
- Primitive Function
- Bounds for integrals: ML-inequality
- Cauchy-Goursat Theorem
- Cauchy’s proof (feat. Green’s theorem)
- Goursat’s proof
- Cauchy’s Integral Formula
- Extended Cauchy’s Integral Formula
- Applications of Cauchy Integral
- Cauchy’s Inequality
- Liouville’s Theorem
- Fundamental Theorem of Algebra
- Morera’s Theorem
#Part III - Power Series
Talyor Series
If $f(z)$ is analytic at $z_0$, and $f(z)$ is analytic through the disk $\lvert z-z_0 \rvert < R_0$.
THEN, $f(z)$ has a power series representation
\[f(z) = \sum^{\infty}_{n=0} a_n (z-z_0)^n \quad (\lvert z-z_0 \rvert < R_0)\]where
\[a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_0)^{n+1}} dz\]Laurent Series
Supp. that a function $f(z)$ is analytic throughout a domain $D$ containing an annular region $R_1 \le \lvert z-z_0 \rvert \le R_2$. THEN, $f(z)$ can be represented as the Laurnet series
\[f(z) = \sum^{\infty}_{n=0} a_n (z-z_0)^n + \sum^{\infty}_{n=1} \frac{b_n}{(z-z_0)^n} \quad (R_1 \le \lvert z-z_0 \rvert < R_2)\]The coefficient of the Laurent series are given by
\[a_n = \frac{1}{2\pi i} \oint_{C} \frac{f(w)}{(w-z_0)^{n+1}} dw \quad \textrm{and} \quad b_n = \frac{1}{2\pi i} \oint_{C} f(w)(w-z_0)^{n-1} dw\]- Convergence Tests
- ratio test
- root test
- Uniformly Convergent
- $g_n(x) = x^n$ on $[0, 1]$ doesn’t uniformly converge.
- Talyor Series
- Laurent Series
Part IV - Residue
- Residue Theorem
- singular points & poles
- Formulas for residue
- Applications to real integrals; integral with $\cos$, $\sin$ / improper integral
Part V - Complex Transformation
- Linear Transformation
- Linear Fractional Trnasformation
- Conformal mapping
- $w = \sin z$
- Laplace’s Equation