โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

1 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

Uniform Distribution

Definition. Uniform Distribution

We say that $X$ is a <uniform RV> on $[a, b]$ if its pdf $f(x)$ is given by

\[f(x) = \begin{cases} \dfrac{1}{b-a} & x \in (a, b) \\ \quad 0 & \text{else} \end{cases}\]

์ด๋Ÿฐ <Uniform RV> $X$๋ฅผ $X \sim \text{Unif}(a, b)$๋ผ๊ณ  ํ‘œ๊ธฐํ•œ๋‹ค.

cdf $F(x)$๋ฅผ ๊ตฌํ•ด๋ณด๋ฉด,

\[F(x) = \int^x_{\infty} f(t) dt = \begin{cases} \quad 0 & \text{if } x < a \\ \dfrac{x-a}{b-a} & \text{if } a \le x < b \\ \quad 1 & \text{if } x \ge b \end{cases}\]

ํ‰๊ท  $E[X]$๋Š” $\dfrac{a+b}{2}$, ๋ถ„์‚ฐ $\text{Var}(X) = \dfrac{(b-a)^2}{12}$์ด๋‹ค. ์ฒœ์ฒœํžˆ ์†์œผ๋กœ ์œ ๋„ํ•ด๋ณด๋ฉด ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์ž‡์œผ๋‹ˆ ์—ฌ๊ธฐ์„œ ๊ณผ์ •์„ ๊ธฐ์ˆ ํ•˜์ง€๋Š” ์•Š๊ฒ ๋‹ค.

If $U \sim \text{Unif}(0, 1)$, then $X := aU + b \sim \text{Unif}(b, a + b)$.

If $X \sim \text{Unif}(a, b)$, then $U := \dfrac{X-a}{b-a} \sim \text{Unif}(0, 1)$.


์ด์–ด์ง€๋Š” ํฌ์ŠคํŠธ์—์„œ๋Š” ์ข€๋” ๋‹ค์–‘ํ•˜๊ณ , ์—„์ฒญ๋‚œ ๋ถ„ํฌ๋“ค์„ ๋งŒ๋‚˜๊ฒŒ ๋œ๋‹ค.