Uniform Distribution
โํ๋ฅ ๊ณผ ํต๊ณ(MATH230)โ ์์ ์์ ๋ฐฐ์ด ๊ฒ๊ณผ ๊ณต๋ถํ ๊ฒ์ ์ ๋ฆฌํ ํฌ์คํธ์ ๋๋ค. ์ ์ฒด ํฌ์คํธ๋ Probability and Statistics์์ ํ์ธํ์ค ์ ์์ต๋๋ค ๐ฒ
์๋ฆฌ์ฆ: Continuous Probability Distributions
Uniform Distribution
Definition. Uniform Distribution
We say that $X$ is a <uniform RV> on $[a, b]$ if its pdf $f(x)$ is given by
\[f(x) = \begin{cases} \dfrac{1}{b-a} & x \in (a, b) \\ \quad 0 & \text{else} \end{cases}\]์ด๋ฐ <Uniform RV> $X$๋ฅผ $X \sim \text{Unif}(a, b)$๋ผ๊ณ ํ๊ธฐํ๋ค.
cdf $F(x)$๋ฅผ ๊ตฌํด๋ณด๋ฉด,
\[F(x) = \int^x_{\infty} f(t) dt = \begin{cases} \quad 0 & \text{if } x < a \\ \dfrac{x-a}{b-a} & \text{if } a \le x < b \\ \quad 1 & \text{if } x \ge b \end{cases}\]ํ๊ท $E[X]$๋ $\dfrac{a+b}{2}$, ๋ถ์ฐ $\text{Var}(X) = \dfrac{(b-a)^2}{12}$์ด๋ค. ์ฒ์ฒํ ์์ผ๋ก ์ ๋ํด๋ณด๋ฉด ์ฝ๊ฒ ๊ตฌํ ์ ์์ผ๋ ์ฌ๊ธฐ์ ๊ณผ์ ์ ๊ธฐ์ ํ์ง๋ ์๊ฒ ๋ค.
If $U \sim \text{Unif}(0, 1)$, then $X := aU + b \sim \text{Unif}(b, a + b)$.
If $X \sim \text{Unif}(a, b)$, then $U := \dfrac{X-a}{b-a} \sim \text{Unif}(0, 1)$.
์ด์ด์ง๋ ํฌ์คํธ์์๋ ์ข๋ ๋ค์ํ๊ณ , ์์ฒญ๋ ๋ถํฌ๋ค์ ๋ง๋๊ฒ ๋๋ค.