β€œν™•λ₯ κ³Ό 톡계(MATH230)” μˆ˜μ—…μ—μ„œ 배운 것과 κ³΅λΆ€ν•œ 것을 μ •λ¦¬ν•œ ν¬μŠ€νŠΈμž…λ‹ˆλ‹€. 전체 ν¬μŠ€νŠΈλŠ” Probability and Statisticsμ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€ 🎲

1 minute read

β€œν™•λ₯ κ³Ό 톡계(MATH230)” μˆ˜μ—…μ—μ„œ 배운 것과 κ³΅λΆ€ν•œ 것을 μ •λ¦¬ν•œ ν¬μŠ€νŠΈμž…λ‹ˆλ‹€. 전체 ν¬μŠ€νŠΈλŠ” Probability and Statisticsμ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€ 🎲

Uniform Distribution

Definition. Uniform Distribution

We say that $X$ is a <uniform RV> on $[a, b]$ if its pdf $f(x)$ is given by

\[f(x) = \begin{cases} \dfrac{1}{b-a} & x \in (a, b) \\ \quad 0 & \text{else} \end{cases}\]

이런 <Uniform RV> $X$λ₯Ό $X \sim \text{Unif}(a, b)$라고 ν‘œκΈ°ν•œλ‹€.

cdf $F(x)$λ₯Ό ꡬ해보면,

\[F(x) = \int^x_{\infty} f(t) dt = \begin{cases} \quad 0 & \text{if } x < a \\ \dfrac{x-a}{b-a} & \text{if } a \le x < b \\ \quad 1 & \text{if } x \ge b \end{cases}\]

평균 $E[X]$λŠ” $\dfrac{a+b}{2}$, λΆ„μ‚° $\text{Var}(X) = \dfrac{(b-a)^2}{12}$이닀. 천천히 μ†μœΌλ‘œ μœ λ„ν•΄λ³΄λ©΄ μ‰½κ²Œ ꡬ할 수 μž‡μœΌλ‹ˆ μ—¬κΈ°μ„œ 과정을 κΈ°μˆ ν•˜μ§€λŠ” μ•Šκ² λ‹€.

If $U \sim \text{Unif}(0, 1)$, then $X := aU + b \sim \text{Unif}(b, a + b)$.

If $X \sim \text{Unif}(a, b)$, then $U := \dfrac{X-a}{b-a} \sim \text{Unif}(0, 1)$.


μ΄μ–΄μ§€λŠ” ν¬μŠ€νŠΈμ—μ„œλŠ” 쒀더 λ‹€μ–‘ν•˜κ³ , μ—„μ²­λ‚œ 뢄포듀을 λ§Œλ‚˜κ²Œ λœλ‹€.