Uniform Distribution
βνλ₯ κ³Ό ν΅κ³(MATH230)β μμ μμ λ°°μ΄ κ²κ³Ό 곡λΆν κ²μ μ 리ν ν¬μ€νΈμ λλ€. μ 체 ν¬μ€νΈλ Probability and Statisticsμμ νμΈνμ€ μ μμ΅λλ€ π²
μ리μ¦: Continuous Probability Distributions
Uniform Distribution
Definition. Uniform Distribution
We say that $X$ is a <uniform RV> on $[a, b]$ if its pdf $f(x)$ is given by
\[f(x) = \begin{cases} \dfrac{1}{b-a} & x \in (a, b) \\ \quad 0 & \text{else} \end{cases}\]μ΄λ° <Uniform RV> $X$λ₯Ό $X \sim \text{Unif}(a, b)$λΌκ³ νκΈ°νλ€.
cdf $F(x)$λ₯Ό ꡬν΄λ³΄λ©΄,
\[F(x) = \int^x_{\infty} f(t) dt = \begin{cases} \quad 0 & \text{if } x < a \\ \dfrac{x-a}{b-a} & \text{if } a \le x < b \\ \quad 1 & \text{if } x \ge b \end{cases}\]νκ· $E[X]$λ $\dfrac{a+b}{2}$, λΆμ° $\text{Var}(X) = \dfrac{(b-a)^2}{12}$μ΄λ€. μ²μ²ν μμΌλ‘ μ λν΄λ³΄λ©΄ μ½κ² ꡬν μ μμΌλ μ¬κΈ°μ κ³Όμ μ κΈ°μ νμ§λ μκ² λ€.
If $U \sim \text{Unif}(0, 1)$, then $X := aU + b \sim \text{Unif}(b, a + b)$.
If $X \sim \text{Unif}(a, b)$, then $U := \dfrac{X-a}{b-a} \sim \text{Unif}(0, 1)$.
μ΄μ΄μ§λ ν¬μ€νΈμμλ μ’λ λ€μνκ³ , μμ²λ λΆν¬λ€μ λ§λκ² λλ€.