Beta Distribution
โํ๋ฅ ๊ณผ ํต๊ณ(MATH230)โ ์์ ์์ ๋ฐฐ์ด ๊ฒ๊ณผ ๊ณต๋ถํ ๊ฒ์ ์ ๋ฆฌํ ํฌ์คํธ์ ๋๋ค. ์ ์ฒด ํฌ์คํธ๋ Probability and Statistics์์ ํ์ธํ์ค ์ ์์ต๋๋ค ๐ฒ
์๋ฆฌ์ฆ: Continuous Probability Distributions
์ ํ ๊ฐ๋ ์ผ๋ก Gamma Distribution์ ๋ํด ์๊ณ ์์ด์ผ ํ๋ค.
\[f(x; \alpha, \beta) = \begin{cases} C_{\alpha, \beta} \cdot x^{\alpha-1} e^{-\frac{x}{\beta}} & \text{for } x > 0 \\ \quad 0 & \text{else} \end{cases}\] \[C_{\alpha, \beta} = \frac{1}{\Gamma(\alpha) \cdot \beta^{\alpha}}\]Beta Distribution
Definition. Beta function; $B(\alpha, \beta)$
Let $\alpha > 0$ and $\beta > 0$. A <bet function> is defined as
\[B(\alpha, \beta) = \int^1_0 x^{\alpha-1}(1-x)^{\beta-1} dx\]Claim.
์์ ์์์ ๋ค์๊ณผ ๊ฐ์ด ์ ๋ถ๋ณ์๋ฅผ ์นํํด๋ณด์.
\[\begin{aligned} x &= uv \\ y&= u(1-v) \\ \left| J \right| &= \left| \begin{matrix} x_u & x_v \\ y_u & y_v \end{matrix} \right| = \left| \begin{matrix} v & u \\ 1-v & -u \end{matrix} \right| = u \end{aligned}\] \[\begin{aligned} &\int^{\infty}_0 \int^{\infty}_0 x^{\alpha-1} y^{\beta-1} \cdot e^{-(x+y)} dx dy \\ &= \int^{\infty}_0 \int^{\infty}_0 (uv))^{\alpha-1} (u(1-v))^{\beta-1} \cdot e^{-(\cancel{uv}+u-\cancel{uv})} \; u \, dudv \\ &= \int^{\infty}_0 \int^{\infty}_0 u^{(\alpha-1) + (\beta-1) + 1} v^{\alpha-1} (1-v)^{\beta-1} \cdot e^{-u} \; du dv \\ &= \int^{\infty}_0 u^{\alpha + \beta-1} \cdot e^{-u} \; du \int^{\infty}_0 v^{\alpha-1} (1-v)^{\beta-1} \; dv \\ &= \Gamma(\alpha + \beta) \cdot B(\alpha, \beta) \end{aligned}\]์ฆ,
\[\Gamma(\alpha)\Gamma(\beta) = \Gamma(\alpha + \beta) B(\alpha, \beta)\]์ด๋ฏ๋ก
\[B(\alpha, \beta) = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}\]$\blacksquare$
Definition. Beta Distribution; $\text{Beta}(\alpha, \beta)$
Let $\alpha>0$ and $\beta>0$. A RV $X$ is called a <beta RV> and decnoted as $X \sim \text{Beta}(\alpha, \beta)$ if its pdf is given by
\[f(x) = \frac{x^{\alpha - 1} \cdot (1-x)^{\beta-1}}{B(\alpha, \beta)} \quad \text{for } x \in (0, 1)\]Remark.
1. $X \sim \text{Beta}(1, 1)$
When $\alpha = \beta = 1$, then $X \sim \text{Beta}(1, 1)$ and pdf is
\[f(x) = \frac{x^0 \cdot (1-x)^0}{B(1, 1)} = \frac{1 \cdot 1}{1} = 1\]($B(1, 1) = \dfrac{\Gamma(1) \cdot \Gamma(1)}{\Gamma(2)} = \dfrac{0! \cdot 0!}{1!} = 1$)
์ฆ, $\text{Beta}(1, 1)$์ Uniform distribution์ ๋ฐ๋ฅด๊ฒ ๋๋ค. ์ด๋ฐ ์ ๋๋ฌธ์ Beta Distribution์ generalization of the uniform distribution on $[0, 1]$๋ผ๊ณ ์ฌ๊ธฐ๊ธฐ๋ ํ๋ค!
2. Coin Tossing
โIf $P(H) = p$, then we can say $p \sim \text{Unif}(0, 1)$.โ
์์ ์์ด๋์ด๋ฅผ ํ์ฅํ๋ฉด,
Toss a coin $n+m$ times, and then we got $n$ heads. Then the distribution of $p$ given this(= got $n$ heads) is
\[p \sim \text{Beta}(n+1, m+1)\]3. Expectation & Variance
If $X \sim \text{Beta}(\alpha, \beta)$, then
- $E[X] = \dfrac{\alpha}{\alpha + \beta}$
- $\text{Var}(X) = \dfrac{\alpha\beta}{(\alpha+\beta)^2 (\alpha+\beta+1)}$
์ ๋ ๊ณผ์ ์ ์ถํ์ ์ถ๊ฐํ๊ฒ ๋ค.
Example.
Let $X_1, X_2, X_3$ be $\text{Unif}(0, 1)$ and independent.
Let $Y:=\max(X_1, X_2, X_3)$. Find the distribution of $Y$.
๋ฐ๋ผ์, pdf๋ $f(y) = 3y^2$๊ฐ ๋๊ณ ์ด๊ฒ์ Beta Distributions์ธ $\text{Beta}(3, 1)$์ pdf์ ๋์ผํ๋ค!!
\[B(3, 1) = \frac{\Gamma(3)\Gamma(1)}{\Gamma(3+1)} = \frac{2! \; 0!}{3!} = \frac{1}{3}\] \[f(x) = \frac{x^{3-1}(1-x)^{1-1}}{B(3, 1)} = \frac{x^2 \cdot 0}{1/3} = 3x^2\]๋งบ์๋ง
์ด์ด์ง๋ ํฌ์คํธ์์๋ <Weibull Distribution>์ ํตํด <๊ฒฐํจ๋ฅ ; Failure rate>์ <์ ๋ขฐ๋; Reliability>์ ๋ชจ๋ธ๋งํ๋ค. ์ด ๋ถ๋ถ์ ์ ๊ท ์์ ์์๋ ์๊ฐ๋ง ํ๊ณ ๋์ด๊ฐ ๋ถ๋ถ์ด๊ธฐ ๋๋ฌธ์ ๊ด์ฌ์ด ์๊ฑฐ๋ ๊ผญ ํ์ํ๊ฒ ์๋๋ผ๋ฉด ๊ฑด๋ ๋ฐ์ด๋ ๊ด์ฐฎ๋ค.