โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

5 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

์„ ํ–‰ ๊ฐœ๋…์œผ๋กœ Gamma Distribution์— ๋Œ€ํ•ด ์•Œ๊ณ  ์žˆ์–ด์•ผ ํ•œ๋‹ค.

\[f(x; \alpha, \beta) = \begin{cases} C_{\alpha, \beta} \cdot x^{\alpha-1} e^{-\frac{x}{\beta}} & \text{for } x > 0 \\ \quad 0 & \text{else} \end{cases}\] \[C_{\alpha, \beta} = \frac{1}{\Gamma(\alpha) \cdot \beta^{\alpha}}\]

Beta Distribution

Definition. Beta function; $B(\alpha, \beta)$

Let $\alpha > 0$ and $\beta > 0$. A <bet function> is defined as

\[B(\alpha, \beta) = \int^1_0 x^{\alpha-1}(1-x)^{\beta-1} dx\]

Claim.

\[B(\alpha, \beta) = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}\]
\[\begin{aligned} \Gamma(\alpha) \Gamma(\beta) &= \left(\int^{\infty}_0 x^{\alpha - 1} e^{-x} dx\right) \cdot \left(\int^{\infty}_0 x^{\beta - 1} e^{-x} dx\right) \\ &= \int^{\infty}_0 \int^{\infty}_0 x^{\alpha-1} y^{\beta-1} \cdot e^{-(x+y)} dx dy \end{aligned}\]

์œ„์˜ ์‹์—์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ ๋ถ„๋ณ€์ˆ˜๋ฅผ ์น˜ํ™˜ํ•ด๋ณด์ž.

\[\begin{aligned} x &= uv \\ y&= u(1-v) \\ \left| J \right| &= \left| \begin{matrix} x_u & x_v \\ y_u & y_v \end{matrix} \right| = \left| \begin{matrix} v & u \\ 1-v & -u \end{matrix} \right| = u \end{aligned}\] \[\begin{aligned} &\int^{\infty}_0 \int^{\infty}_0 x^{\alpha-1} y^{\beta-1} \cdot e^{-(x+y)} dx dy \\ &= \int^{\infty}_0 \int^{\infty}_0 (uv))^{\alpha-1} (u(1-v))^{\beta-1} \cdot e^{-(\cancel{uv}+u-\cancel{uv})} \; u \, dudv \\ &= \int^{\infty}_0 \int^{\infty}_0 u^{(\alpha-1) + (\beta-1) + 1} v^{\alpha-1} (1-v)^{\beta-1} \cdot e^{-u} \; du dv \\ &= \int^{\infty}_0 u^{\alpha + \beta-1} \cdot e^{-u} \; du \int^{\infty}_0 v^{\alpha-1} (1-v)^{\beta-1} \; dv \\ &= \Gamma(\alpha + \beta) \cdot B(\alpha, \beta) \end{aligned}\]

์ฆ‰,

\[\Gamma(\alpha)\Gamma(\beta) = \Gamma(\alpha + \beta) B(\alpha, \beta)\]

์ด๋ฏ€๋กœ

\[B(\alpha, \beta) = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}\]

$\blacksquare$

Definition. Beta Distribution; $\text{Beta}(\alpha, \beta)$

Let $\alpha>0$ and $\beta>0$. A RV $X$ is called a <beta RV> and decnoted as $X \sim \text{Beta}(\alpha, \beta)$ if its pdf is given by

\[f(x) = \frac{x^{\alpha - 1} \cdot (1-x)^{\beta-1}}{B(\alpha, \beta)} \quad \text{for } x \in (0, 1)\]

Remark.

1. $X \sim \text{Beta}(1, 1)$

When $\alpha = \beta = 1$, then $X \sim \text{Beta}(1, 1)$ and pdf is

\[f(x) = \frac{x^0 \cdot (1-x)^0}{B(1, 1)} = \frac{1 \cdot 1}{1} = 1\]

($B(1, 1) = \dfrac{\Gamma(1) \cdot \Gamma(1)}{\Gamma(2)} = \dfrac{0! \cdot 0!}{1!} = 1$)

์ฆ‰, $\text{Beta}(1, 1)$์€ Uniform distribution์„ ๋”ฐ๋ฅด๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฐ ์  ๋•Œ๋ฌธ์— Beta Distribution์„ generalization of the uniform distribution on $[0, 1]$๋ผ๊ณ  ์—ฌ๊ธฐ๊ธฐ๋„ ํ•œ๋‹ค!


2. Coin Tossing

โ€œIf $P(H) = p$, then we can say $p \sim \text{Unif}(0, 1)$.โ€

์œ„์˜ ์•„์ด๋””์–ด๋ฅผ ํ™•์žฅํ•˜๋ฉด,

Toss a coin $n+m$ times, and then we got $n$ heads. Then the distribution of $p$ given this(= got $n$ heads) is

\[p \sim \text{Beta}(n+1, m+1)\]


3. Expectation & Variance

If $X \sim \text{Beta}(\alpha, \beta)$, then

  • $E[X] = \dfrac{\alpha}{\alpha + \beta}$
  • $\text{Var}(X) = \dfrac{\alpha\beta}{(\alpha+\beta)^2 (\alpha+\beta+1)}$

์œ ๋„ ๊ณผ์ •์€ ์ถ”ํ›„์— ์ถ”๊ฐ€ํ•˜๊ฒ ๋‹ค.


Example.

Let $X_1, X_2, X_3$ be $\text{Unif}(0, 1)$ and independent.

Let $Y:=\max(X_1, X_2, X_3)$. Find the distribution of $Y$.

\[\begin{aligned} P(Y \le y) &= P(X_1 \le y, X_2 \le y, X_3 \le y) \\ &= P(X_1 \le y) P(X_2 \le y) P(X_3 \le y) \quad (\text{independence}) \\ &= y \cdot y \cdot y = y^3 \end{aligned}\]

๋”ฐ๋ผ์„œ, pdf๋Š” $f(y) = 3y^2$๊ฐ€ ๋˜๊ณ  ์ด๊ฒƒ์€ Beta Distributions์ธ $\text{Beta}(3, 1)$์˜ pdf์™€ ๋™์ผํ•˜๋‹ค!!

\[B(3, 1) = \frac{\Gamma(3)\Gamma(1)}{\Gamma(3+1)} = \frac{2! \; 0!}{3!} = \frac{1}{3}\] \[f(x) = \frac{x^{3-1}(1-x)^{1-1}}{B(3, 1)} = \frac{x^2 \cdot 0}{1/3} = 3x^2\]

๋งบ์Œ๋ง

์ด์–ด์ง€๋Š” ํฌ์ŠคํŠธ์—์„œ๋Š” <Weibull Distribution>์„ ํ†ตํ•ด <๊ฒฐํ•จ๋ฅ ; Failure rate>์™€ <์‹ ๋ขฐ๋„; Reliability>์„ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ด ๋ถ€๋ถ„์€ ์ •๊ทœ ์ˆ˜์—…์—์„œ๋Š” ์†Œ๊ฐœ๋งŒ ํ•˜๊ณ  ๋„˜์–ด๊ฐ„ ๋ถ€๋ถ„์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ด€์‹ฌ์ด ์žˆ๊ฑฐ๋‚˜ ๊ผญ ํ•„์š”ํ•œ๊ฒŒ ์•„๋‹ˆ๋ผ๋ฉด ๊ฑด๋„ˆ ๋›ฐ์–ด๋„ ๊ดœ์ฐฎ๋‹ค.

๐Ÿ‘‰ Weibull Distribution (Optional)