โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

3 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

์„ ํ–‰ ๊ฐœ๋…์œผ๋กœ Gamma Distribution์— ๋Œ€ํ•ด ์•Œ๊ณ  ์žˆ์–ด์•ผ ํ•œ๋‹ค.

\[f(x; \alpha, \beta) = \begin{cases} C_{\alpha, \beta} \cdot x^{\alpha-1} e^{-\frac{x}{\beta}} & \text{for } x > 0 \\ \quad 0 & \text{else} \end{cases}\] \[C_{\alpha, \beta} = \frac{1}{\Gamma(\alpha) \cdot \beta^{\alpha}}\]

Chi-square Distribution

Definition. Chi-square Distribution

A RV $X$ is called a <Chi-square RV> with $n$ degrees of freedom, denoted as $X \sim \chi^2(n)$,
if it has a Gamma distribution with $\alpha = n/2$ and $\beta=2$.

That is, its pdf is given by

\[f(x; n/2, 2) = \frac{1}{\Gamma(n/2) \cdot 2^{n/2}} \cdot x^{n/2 - 1} \cdot e^{-x/2}\] \[\chi^2(n) = \text{Gamma}\left(\frac{n}{2}, 2\right)\]


Remark.

1. If $Z \sim N(0, 1)$, then $Z^2 \sim \chi^2(1)$.

proof.

For $Z \sim N(0, 1)$, let $Y = Z^2$.

Letโ€™s see cdf $P(Y \le y)$,

\[\begin{aligned} F(y) &= P(Y \le y) = P(Z^2 \le y) \\ &= P(-\sqrt{y} \le Z \le \sqrt{y}) \end{aligned}\]

๊ทธ๋Ÿผ ์ด์ œ ์ •๊ทœ๋ถ„ํฌ $Z$์—์„œ์˜ ํ™•๋ฅ ์„ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด๋ฏ€๋กœ ์ ๋ถ„์‹์„ ๊ตฌ์„ฑํ•˜๋ฉด,

\[\begin{aligned} \int^{\sqrt{y}}_{-\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz &= 2 \int^{\sqrt{y}}_{0} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \end{aligned}\]

์œ„์˜ ๊ณผ์ •์—์„œ๋Š” ์ •๊ทœ๋ถ„ํฌ์˜ ์šฐํ•จ์ˆ˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•œ ๊ฒƒ์ด๋‹ค. ์œ„์˜ ์‹์—์„œ $z = \sqrt{x}$๋กœ ์น˜ํ™˜์ ๋ถ„์„ ์ง„ํ–‰ํ•ด๋ณด์ž.

\[z = \sqrt{x} \iff dz = \frac{1}{2\sqrt{x}} dx\]

๊ทธ๋ฆฌ๊ณ  ์ ๋ถ„์‹์— ๋Œ€์ž…ํ•˜๋ฉด,

\[\begin{aligned} 2 \int^{\sqrt{y}}_{0} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz &= \frac{1}{\sqrt{2\pi}} \cancel{2} \int^y_0 \frac{1}{\cancel{2}\sqrt{x}} e^{-\frac{x}{2}} dx \\ &= \frac{1}{\sqrt{2\pi}} \int^y_0 x^{-\frac{1}{2}} e^{-\frac{x}{2}} dx \end{aligned}\]

์ฆ‰, $Y = Z^2$์˜ cdf๋Š”

\[F(y) = \frac{1}{\sqrt{2\pi}} \int^y_0 x^{\frac{1}{2} - 1} e^{-\frac{x}{2}} dx\]

์ด๋‹ค. ์ด์ œ pdf๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ์–‘๋ณ€์„ ๋ฏธ๋ถ„ํ•˜๋ฉด,

\[\begin{aligned} f(y) = \frac{d}{dy} F(y) = \frac{1}{\sqrt{2\pi}} y^{\frac{1}{2} - 1} e^{-\frac{y}{2}} \end{aligned}\]

์ด๋•Œ, ๊ฐ๋งˆํ•จ์ˆ˜ $\Gamma(1/2)$๋Š” $\sqrt{\pi}$์˜ ๊ฐ’์„ ๊ฐ–๋Š”๋‹ค. ๋”ฐ๋ผ์„œ,

\[\begin{aligned} f(y) &= \frac{1}{\sqrt{2\pi}} y^{\frac{1}{2} - 1} e^{-\frac{y}{2}} \\ &= \frac{1}{\Gamma(1/2) \cdot 2^{\frac{1}{2}}} \cdot y^{\frac{1}{2} - 1} e^{-\frac{y}{2}} \end{aligned}\]

์ด๊ฒƒ์€ ๊ณง, ๊ฐ๋งˆ ๋ถ„ํฌ $\text{Gamma}(1/2, 2)$์˜ pdf์™€ ๊ฐ™๋‹ค! ๋”ฐ๋ผ์„œ,

\[\left(Z(0, 1)\right)^2 \overset{D}{=} \text{Gamma}(1/2, 2) \overset{D}{=} \chi^2(1)\]


2. If $X \sim \chi^2(n)$, then

  • $E[X] = n$
  • $\text{Var}(X) = 2n$

๋งบ์Œ๋ง

์ด์–ด์ง€๋Š” ํฌ์ŠคํŠธ์—์„œ๋Š” <Weibull Distribution>์„ ํ†ตํ•ด <๊ฒฐํ•จ๋ฅ ; Failure rate>์™€ <์‹ ๋ขฐ๋„; Reliability>์„ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ด ๋ถ€๋ถ„์€ ์ •๊ทœ ์ˆ˜์—…์—์„œ๋Š” ์†Œ๊ฐœ๋งŒ ํ•˜๊ณ  ๋„˜์–ด๊ฐ„ ๋ถ€๋ถ„์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ด€์‹ฌ์ด ์žˆ๊ฑฐ๋‚˜ ๊ผญ ํ•„์š”ํ•œ๊ฒŒ ์•„๋‹ˆ๋ผ๋ฉด ๊ฑด๋„ˆ ๋›ฐ์–ด๋„ ๊ดœ์ฐฎ๋‹ค.

๐Ÿ‘‰ Weibull Distribution (Optional)