โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

1 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

์„ ํ–‰ ๊ฐœ๋…์œผ๋กœ Gamma Distribution์— ๋Œ€ํ•ด ์•Œ๊ณ  ์žˆ์–ด์•ผ ํ•œ๋‹ค.

\[f(x; \alpha, \beta) = \begin{cases} C_{\alpha, \beta} \cdot x^{\alpha-1} e^{-\frac{x}{\beta}} & \text{for } x > 0 \\ \quad 0 & \text{else} \end{cases}\] \[C_{\alpha, \beta} = \frac{1}{\Gamma(\alpha) \cdot \beta^{\alpha}}\]

Log-normal Distribution

Definition.

A RV $X$ is called a <log-normal RV> if $\log X \sim N(\mu, \sigma^2)$. We denote $X \sim \text{LN}(\mu, \sigma^2)$.

์ฆ‰, RV $X$์— log๋ฅผ ์ทจํ•œ ๊ฒƒ์ด normal distribution์ด ๋œ๋‹ค๋ฉด, โ€œlog-normalโ€์ด๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ๊ฒƒ์ด๋‹ค.

Remark.

1. $X := e^Y$

If $Y \sim N(\mu, \sigma^2)$ and $X := e^Y$, then $X \sim \text{LN}(\mu, \sigma^2)$.


2. Expectation & Variance

  • $E[X] = \exp \left(\mu + \frac{\sigma^2}{2} \right)$
  • $\text{Var}(X) = (e^{\sigma^2} - 1)\cdot e^{2\mu + \sigma^2}$

๋งบ์Œ๋ง

์ด์–ด์ง€๋Š” ํฌ์ŠคํŠธ์—์„œ๋Š” <Weibull Distribution>์„ ํ†ตํ•ด <๊ฒฐํ•จ๋ฅ ; Failure rate>์™€ <์‹ ๋ขฐ๋„; Reliability>์„ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ด ๋ถ€๋ถ„์€ ์ •๊ทœ ์ˆ˜์—…์—์„œ๋Š” ์†Œ๊ฐœ๋งŒ ํ•˜๊ณ  ๋„˜์–ด๊ฐ„ ๋ถ€๋ถ„์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ด€์‹ฌ์ด ์žˆ๊ฑฐ๋‚˜ ๊ผญ ํ•„์š”ํ•œ๊ฒŒ ์•„๋‹ˆ๋ผ๋ฉด ๊ฑด๋„ˆ ๋›ฐ์–ด๋„ ๊ดœ์ฐฎ๋‹ค.

๐Ÿ‘‰ Weibull Distribution (Optional)