Weibull Distribution (Optional)
โํ๋ฅ ๊ณผ ํต๊ณ(MATH230)โ ์์ ์์ ๋ฐฐ์ด ๊ฒ๊ณผ ๊ณต๋ถํ ๊ฒ์ ์ ๋ฆฌํ ํฌ์คํธ์ ๋๋ค. ์ ์ฒด ํฌ์คํธ๋ Probability and Statistics์์ ํ์ธํ์ค ์ ์์ต๋๋ค ๐ฒ
์๋ฆฌ์ฆ: Continuous Probability Distributions
Weibull Distribution
Definition.
Let $\alpha > 0$ and $\beta > 0$. We say that a RV $X$ has a <Weibull distribution>, denoted as $X \sim \text{Weibull}(\alpha, \beta)$, if its pdf $f(x)$ is given by
\[f(x; \alpha, \beta) = \alpha \beta \cdot x^{\beta - 1} \cdot e^{-\alpha x^{\beta}} \quad \text{for } x > 0\]<Weibull Distribution>์ ์ด๋ฐ ๋ถํฌ๊ฐ ์๋ค ์ ๋๋ง ์๊ฐํ๊ณ ๋์ด๊ฐ๋ค.
Remark.
1. Relationship with Exponential Distribution
if $\beta = 1$, then $\text{Weibull}(\alpha, 1) = \text{Exp}(\alpha)$.
2. cdf of $X$ is
\[F(x) = \int^x_0 f(y) \, dy = \begin{cases} 1 - e^{-\alpha x^{\beta}} & \text{for } x > 0 \\ \quad 0 & \text{else} \end{cases}\]์์ ์์ ๋ฏธ๋ถํด๋ณด๋ฉด, Weibull์ pdf๊ฐ ๋์จ๋ค๋ ๊ฑธ ์ฝ๊ฒ ํ์ธํ ์ ์๋ค.
Failure rate & Reliability
Let $T$ be a RV representing the lifetime (or time to failure) of a certain component.
Let $f(t)$ and $F(t)$ be its pdf and cdf respectively.
Definition.
1. reliability function, or survival function
\[R(t) := P(T > t) = 1 - F(t)\]์ฆ, CDF์ tail probability๋ค. ์๋ํ๋ฉด, $P(T > t)$๋ component๊ฐ $[0, t]$ ๋์ surviveํ ํ๋ฅ ์ ์๋ฏธํ๊ธฐ ๋๋ฌธ์ด๋ค!
2. failure rate, or hazard rate
\[Z(t) := \frac{f(t)}{R(t)}\]Q. Why?
์ด๋, ์์ ์์ $R(t)$๋ฅผ ๋๋ ๋ณด์!
\[\begin{aligned} \frac{f(t)}{R(t)} &= \lim_{h \rightarrow 0} \frac{P(t < T \le t+h)}{h} \cdot \frac{1}{R(t)} \\ &= \lim_{h \rightarrow 0} \frac{P(t < T \le t+h)}{h \cdot R(t)} \\ &= \lim_{h \rightarrow 0} \frac{1}{h} \cdot \frac{P(t < T \le t+h)}{P(T > t)} \end{aligned}\]์์ ์์์ ๋ณผ ์ ์๋ฏ, condition probability $\dfrac{P(t < T \le t+h)}{P(t > t)} = P(t < T \le t+h \mid T > t )$์ด ๋๋ค. ๊ทธ๋์ ์์ ์ ๋ฆฌํ๋ฉด,
\[\frac{f(t)}{R(t)} = \lim_{h \rightarrow 0} \frac{P(t < T \le t+h \mid T > t)}{h}\]์์ ์์ failure rate $f(t)/R(t)$๊ฐ โthe rate of the probability of the failure right after time $t$โ์์ ์๋ฏธํ๋ค! $\blacksquare$
๋ง์ฝ $T$๊ฐ Weibull distribution์ ๋ฐ๋ฅธ๋ค๋ฉด, failure rate $Z(t)$๋
\[Z(t) = \frac{f(t)}{R(t)} = \frac{\alpha \beta \cdot t^{\beta-1} e^{-\alpha t^{\beta}}}{e^{-\alpha e^{\beta}}} = \alpha \beta \cdot t^{\beta - 1}\]์ด๋ $\beta$์ ๊ฐ์ ๋ฐ๋ผ์ failure rate์ ์์์ ์ดํด๋ณผ ์๋ ์๋๋ฐ,
1. if $\beta = 1$, then the failure rate is $\alpha$ (constant).
์ฆ, ์๊ฐ์ ๊ด๊ณ์์ด failure rate๋ ํญ์ ๊ฐ๋ค.
2. if $\beta > 1$, then failure rate is increasing as $t$ flows.
์ฆ, ์๊ฐ์ด ์ง๋ ์๋ก ์ฅ๋น๊ฐ ์ฝํด์ง๋ค๋ ๊ฒ์ ์๋ฏธํ๋ค.
3. if $\beta < 1$, then failure rate if decreasing.
์ฆ, ์๊ฐ์ด ์ง๋ ์๋ก ์ฅ๋น๊ฐ ์คํ๋ ค ๋ ์ข์์ง๋ ๊ฒ์ ์๋ฏธํ๋ค.
์ด์ด์ง๋ ํฌ์คํธ์์๋ Random Variable์ ๊ฐ๋จํ ๋ณํ(Transform)์ ์ ์ฉํ์ ๋์ pdf๋ฅผ ์ด๋ป๊ฒ ๊ตฌํ๋์ง ์ดํด๋ณธ๋ค. ๋ท๋ถ๋ถ์๋ moment์ ๊ตฌํ๋ ํจ์์ธ <MGF; Momentim Generating Function>๋ ๋ฑ์ฅํ๊ธฐ ๋๋ฌธ์ ์ค์ํ ์ฑํฐ๋ผ๊ณ ํ ์ ์๋ค!